- Browse by Author
Browsing by Author "Taketo, M. Mark"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Uncoupling of macrophage inflammation from self-renewal modulates host recovery from respiratory viral infection(Cell Press, 2021) Zhu, Bibo; Wu, Yue; Huang, Su; Zhang, Ruixuan; Son, Young Min; Li, Chaofan; Cheon, In Su; Gao, Xiaochen; Wang, Min; Chen, Yao; Zhou, Xian; Nguyen, Quynh; Phan, Anthony T.; Behl, Supriya; Taketo, M. Mark; Mack, Matthias; Shapiro, Virginia S.; Zeng, Hu; Ebihara, Hideki; Mullon, John J.; Edell, Eric S.; Reisenauer, Janani S.; Demirel, Nadir; Kern, Ryan M.; Chakraborty, Rana; Cui, Weiguo; Kaplan, Mark H.; Zhou, Xiaobo; Goldrath, Ananda W.; Sun, Jie; Microbiology and Immunology, School of MedicineTissue macrophages self-renew during homeostasis and produce inflammatory mediators upon microbial infection. We examined the relationship between proliferative and inflammatory properties of tissue macrophages by defining the impact of the Wnt/β-catenin pathway, a central regulator of self-renewal, in alveolar macrophages (AMs). Activation of β-catenin by Wnt ligand inhibited AM proliferation and stemness, but promoted inflammatory activity. In a murine influenza viral pneumonia model, β-catenin-mediated AM inflammatory activity promoted acute host morbidity; in contrast, AM proliferation enabled repopulation of reparative AMs and tissue recovery following viral clearance. Mechanistically, Wnt treatment promoted β-catenin-HIF-1α interaction and glycolysis-dependent inflammation while suppressing mitochondrial metabolism and thereby, AM proliferation. Differential HIF-1α activities distinguished proliferative and inflammatory AMs in vivo. This β-catenin-HIF-1α axis was conserved in human AMs and enhanced HIF-1α expression associated with macrophage inflammation in COVID-19 patients. Thus, inflammatory and reparative activities of lung macrophages are regulated by β-catenin-HIF-1α signaling, with implications for the treatment of severe respiratory diseases.