ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Tak, D."

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A Multiwavelength Investigation of PSR J2229+6114 and its Pulsar Wind Nebula in the Radio, X-Ray, and Gamma-Ray Bands
    (IOP, 2024-01) Pope, I.; Mori, K.; Abdelmaguid, M.; Gelfand, J. D.; Reynolds, S. P.; Safi-Harb, S.; Hailey, C. J.; An, H.; (NuSTAR Collaboration); Bangale, P.; Batista, P.; Benbow, W.; Buckley, J. H.; Capasso, M.; Christiansen, J. L.; Chromey, A. J.; Falcone, A.; Feng, Q.; Finley, J. P.; Foote, G. M.; Gallagher, G.; Hanlon, W. F.; Hanna, D.; Hervet, O.; Holder, J.; Humensky, T. B.; Jin, W.; Kaaret, P.; Kertzman, M.; Kieda, D.; Kleiner, T. K.; Korzoun, N.; Krennrich, F.; Kumar, S.; Lang, M. J.; Maier, G.; McGrath, C. E.; Mooney, C. L.; Moriarty, P.; Mukherjee, R.; O'Brien, S.; Ong, R. A.; Park, N.; Patel, S. R.; Pfrang, K.; Pohl, M.; Pueschel, E.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Roache, E.; Sadeh, I.; Saha, L.; Sembroski, G. H.; Tak, D.; Tucci, J. V.; Weinstein, A.; Williams, D. A.; Woo, J.; (VERITAS Collaboration); Physics, School of Science
    G106.3+2.7, commonly considered to be a composite supernova remnant (SNR), is characterized by a boomerang-shaped pulsar wind nebula (PWN) and two distinct ("head" and "tail") regions in the radio band. A discovery of very-high-energy gamma-ray emission (Eγ > 100 GeV) followed by the recent detection of ultrahigh-energy gamma-ray emission (Eγ > 100 TeV) from the tail region suggests that G106.3+2.7 is a PeVatron candidate. We present a comprehensive multiwavelength study of the Boomerang PWN (100'' around PSR J2229+6114) using archival radio and Chandra data obtained two decades ago, a new NuSTAR X-ray observation from 2020, and upper limits on gamma-ray fluxes obtained by Fermi-LAT and VERITAS observatories. The NuSTAR observation allowed us to detect a 51.67 ms spin period from the pulsar PSR J2229+6114 and the PWN emission characterized by a power-law model with Γ = 1.52 ± 0.06 up to 20 keV. Contrary to the previous radio study by Kothes et al., we prefer a much lower PWN B-field (B ∼ 3 μG) and larger distance (d ∼ 8 kpc) based on (1) the nonvarying X-ray flux over the last two decades, (2) the energy-dependent X-ray size of the PWN resulting from synchrotron burn-off, and (3) the multiwavelength spectral energy distribution (SED) data. Our SED model suggests that the PWN is currently re-expanding after being compressed by the SNR reverse shock ∼1000 yr ago. In this case, the head region should be formed by GeV–TeV electrons injected earlier by the pulsar propagating into the low-density environment.
  • Loading...
    Thumbnail Image
    Item
    A VERITAS/Breakthrough Listen Search for Optical Technosignatures
    (IOP, 2023-09) Acharyya, A.; Adams, C. B.; Archer, A.; Bangale, P.; Batista, P.; Benbow, W.; Brill, A.; Capasso, M.; Errando, M.; Falcone, A.; Feng, Q.; Finley, J. P.; Foote, G. M.; Fortson, L.; Furniss, A.; Griffin, S.; Hanlon, W.; Hanna, D.; Hervet, O.; Hinrichs, C. E.; Hoang, J.; Holder, J.; Humensky, T. B.; Jin, W.; Kaaret, P.; Kertzman, M.; Kherlakian, M.; Kieda, D.; Kleiner, T. K.; Korzoun, N.; Kumar, S.; Lang, M. J.; Lundy, M.; Maier, G.; McGrath, C. E.; Millard, M. J.; Miller, H. R.; Millis, J.; Mooney, C. L.; Moriarty, P.; Mukherjee, R.; O'Brien, S.; Ong, R. A.; Pohl, M.; Pueschel, E.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Ribeiro, D.; Roache, E.; Ryan, J. L.; Sadeh, I.; Saha, L.; Santander, M.; Sembroski, G. H.; Shang, R.; Tak, D.; Talluri, A. K.; Tucci, J. V.; Vazquez, N.; Williams, D. A.; Wong, S. L.; Woo, J.; VERITAS Collaboration; DeBoer, D.; Isaacson, H.; de Pater, I.; Price, D. C.; Siemion, A.; Physics, School of Science
    The Breakthrough Listen Initiative is conducting a program using multiple telescopes around the world to search for "technosignatures": artificial transmitters of extraterrestrial origin from beyond our solar system. The Very Energetic Radiation Imaging Telescope Array System (VERITAS) Collaboration joined this program in 2018 and provides the capability to search for one particular technosignature: optical pulses of a few nanoseconds in duration detectable over interstellar distances. We report here on the analysis and results of dedicated VERITAS observations of Breakthrough Listen targets conducted in 2019 and 2020 and of archival VERITAS data collected since 2012. Thirty hours of dedicated observations of 136 targets and 249 archival observations of 140 targets were analyzed and did not reveal any signals consistent with a technosignature. The results are used to place limits on the fraction of stars hosting transmitting civilizations. We also discuss the minimum pulse sensitivity of our observations and present VERITAS observations of CALIOP: a space-based pulsed laser on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations. The detection of these pulses with VERITAS, using the analysis techniques developed for our technosignature search, allows a test of our analysis efficiency and serves as an important proof of principle.
  • Loading...
    Thumbnail Image
    Item
    Search for Ultraheavy Dark Matter from Observations of Dwarf Spheroidal Galaxies with VERITAS
    (IOP, 2023-03) Acharyya, A.; Archer, A.; Bangale, P.; Bartkoske, J. T.; Batista, P.; Baumgart, M.; Benbow, W.; Buckley, J. H.; Falcone, A.; Feng, Q.; Finley, J. P.; Foote, G. M.; Fortson, L.; Furniss, A.; Gallagher, G.; Hanlon, W. F.; Hervet, O.; Hoang, J.; Holder, J.; Humensky, T. B.; Jin, W.; Kaaret, P.; Kertzman, M.; Kherlakian, M.; Kieda, D.; O'Brien, S.; Ong, R. A.; Pfrang, K.; Pohl, M.; Pueschel, E.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Roache, E.; Rodd, N. L.; Ryan, J. L.; Sadeh, I.; Saha, L.; Santander, M.; Sembroski, G. H.; Shang, R.; Splettstoesser, M.; Tak, D.; Tucci, J. V.; Vassiliev, V. V.; Williams, D. A.; Physics, School of Science
    Dark matter is a key piece of the current cosmological scenario, with weakly interacting massive particles (WIMPs) a leading dark matter candidate. WIMPs have not been detected in their conventional parameter space (100 GeV ≲Mχ ≲ 100 TeV), a mass range accessible with current Imaging Atmospheric Cherenkov Telescopes. As ultraheavy dark matter (UHDM; Mχ ≳ 100 TeV) has been suggested as an underexplored alternative to the WIMP paradigm, we search for an indirect dark matter annihilation signal in a higher mass range (up to 30 PeV) with the VERITAS γ-ray observatory. With 216 hr of observations of four dwarf spheroidal galaxies, we perform an unbinned likelihood analysis. We find no evidence of a γ-ray signal from UHDM annihilation above the background fluctuation for any individual dwarf galaxy nor for a joint-fit analysis, and consequently constrain the velocity-weighted annihilation cross section of UHDM for dark matter particle masses between 1 TeV and 30 PeV. We additionally set constraints on the allowed radius of a composite UHDM particle.
  • Loading...
    Thumbnail Image
    Item
    VERITAS and Fermi-LAT Constraints on the Gamma-Ray Emission from Superluminous Supernovae SN2015bn and SN2017egm
    (IOP, 2023) Acharyya, A.; Adams, C. B.; Bangale, P.; Benbow, W.; Buckley, J. H.; Capasso, M.; Dwarkadas, V. V.; Errando, M.; Falcone, A.; Feng, Q.; Finley, J. P.; Foote, G. M.; Fortson, L.; Furniss, A.; Gallagher, G.; Gent, A.; Hanlon, W. F.; Hervet, O.; Holder, J.; Humensky, T. B.; Jin, W.; Kaaret, P.; Kertzman, M.; Kherlakian, M.; Kieda, D.; Kleiner, T. K.; Kumar, S.; Lang, M. J.; Lundy, M.; Maier, G.; McGrath, C. E.; Millis, J.; Moriarty, P.; Mukherjee, R.; Nievas-Rosillo, M.; O'Brien, S.; Ong, R. A.; Patel, S. R.; Pfrang, K.; Pohl, M.; Pueschel, E.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Ribeiro, D.; Roache, E.; Ryan, J. L.; Sadeh, I.; Santander, M.; Sembroski, G. H.; Shang, R.; Splettstoesser, M.; Tak, D.; Tucci, J. V.; Weinstein, A.; Williams, D. A.; VERITAS collaboration; Metzger, B. D.; Nicholl, M.; Vurm, I.; Physics, School of Science
    Superluminous supernovae (SLSNe) are a rare class of stellar explosions with luminosities ∼ 10–100 times greater than ordinary core-collapse supernovae. One popular model to explain the enhanced optical output of hydrogen-poor (Type I) SLSNe invokes energy injection from a rapidly spinning magnetar. A prediction in this case is that high-energy gamma-rays, generated in the wind nebula of the magnetar, could escape through the expanding supernova ejecta at late times (months or more after optical peak). This paper presents a search for gamma-ray emission in the broad energy band from 100 MeV to 30 TeV from two Type I SLSNe, SN2015bn, and SN2017egm, using observations from Fermi-LAT and VERITAS. Although no gamma-ray emission was detected from either source, the derived upper limits approach the putative magnetar's spin-down luminosity. Prospects are explored for detecting very-high-energy (VHE; 100 GeV–100 TeV) emission from SLSNe-I with existing and planned facilities such as VERITAS and CTA.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University