ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Taguchi, Keiko"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Health position paper and redox perspectives - Bench to bedside transition for pharmacological regulation of NRF2 in noncommunicable diseases
    (Elsevier, 2025) Cuadrado, Antonio; Cazalla, Eduardo; Bach, Anders; Bathish, Boushra; Naidu, Sharadha Dayalan; DeNicola, Gina M.; Dinkova-Kostova, Albena T.; Fernández-Ginés, Raquel; Grochot-Przeczek, Anna; Hayes, John D.; Kensler, Thomas W.; León, Rafael; Liby, Karen T.; López, Manuela G.; Manda, Gina; Shivakumar, Akshatha Kalavathi; Hakomäki, Henriikka; Moerland, Jessica A.; Motohashi, Hozumi; Rojo, Ana I.; Sykiotis, Gerasimos P.; Taguchi, Keiko; Valverde, Ángela M.; Yamamoto, Masayuki; Levonen, Anna-Liisa; Medicine, School of Medicine
    Nuclear factor erythroid 2-related factor 2 (NRF2) is a redox-activated transcription factor regulating cellular defense against oxidative stress, thereby playing a pivotal role in maintaining cellular homeostasis. Its dysregulation is implicated in the progression of a wide array of human diseases, making NRF2 a compelling target for therapeutic interventions. However, challenges persist in drug discovery and safe targeting of NRF2, as unresolved questions remain especially regarding its context-specific role in diseases and off-target effects. This comprehensive review discusses the dualistic role of NRF2 in disease pathophysiology, covering its protective and/or destructive roles in autoimmune, respiratory, cardiovascular, and metabolic diseases, as well as diseases of the digestive system and cancer. Additionally, we also review the development of drugs that either activate or inhibit NRF2, discuss main barriers in translating NRF2-based therapies from bench to bedside, and consider the ways to monitor NRF2 activation in vivo.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University