- Browse by Author
Browsing by Author "Symmans, W. Fraser"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Multiomics in primary and metastatic breast tumors from the AURORA US network finds microenvironment and epigenetic drivers of metastasis(Springer Nature, 2023) Garcia-Recio, Susana; Hinoue, Toshinori; Wheeler, Gregory L.; Kelly, Benjamin J.; Garrido-Castro, Ana C.; Pascual, Tomas; De Cubas, Aguirre A.; Xia, Youli; Felsheim, Brooke M.; McClure, Marni B.; Rajkovic, Andrei; Karaesmen, Ezgi; Smith, Markia A.; Fan, Cheng; Gonzalez Ericsson, Paula I.; Sanders, Melinda E.; Creighton, Chad J.; Bowen, Jay; Leraas, Kristen; Burns, Robyn T.; Coppens, Sara; Wheless, Amy; Rezk, Salma; Garrett, Amy L.; Parker, Joel S.; Foy, Kelly K.; Shen, Hui; Park, Ben H.; Krop, Ian; Anders, Carey; Gastier-Foster, Julie; Rimawi, Mothaffar F.; Nanda, Rita; Lin, Nancy U.; Isaacs, Claudine; Marcom, P. Kelly; Storniolo, Anna Maria; Couch, Fergus J.; Chandran, Uma; Davis, Michael; Silverstein, Jonathan; Ropelewski, Alexander; Liu, Minetta C.; Hilsenbeck, Susan G.; Norton, Larry; Richardson, Andrea L.; Symmans, W. Fraser; Wolff, Antonio C.; Davidson, Nancy E.; Carey, Lisa A.; Lee, Adrian V.; Balko, Justin M.; Hoadley, Katherine A.; Laird, Peter W.; Mardis, Elaine R.; King, Tari A.; AURORA US Network; Perou, Charles M.; Medicine, School of MedicineThe AURORA US Metastasis Project was established with the goal to identify molecular features associated with metastasis. We assayed 55 females with metastatic breast cancer (51 primary cancers and 102 metastases) by RNA sequencing, tumor/germline DNA exome and low-pass whole-genome sequencing and global DNA methylation microarrays. Expression subtype changes were observed in ~30% of samples and were coincident with DNA clonality shifts, especially involving HER2. Downregulation of estrogen receptor (ER)-mediated cell-cell adhesion genes through DNA methylation mechanisms was observed in metastases. Microenvironment differences varied according to tumor subtype; the ER+/luminal subtype had lower fibroblast and endothelial content, while triple-negative breast cancer/basal metastases showed a decrease in B and T cells. In 17% of metastases, DNA hypermethylation and/or focal deletions were identified near HLA-A and were associated with reduced expression and lower immune cell infiltrates, especially in brain and liver metastases. These findings could have implications for treating individuals with metastatic breast cancer with immune- and HER2-targeting therapies.Item Report on computational assessment of Tumor Infiltrating Lymphocytes from the International Immuno-Oncology Biomarker Working Group(Nature Research, 2020-05-12) Amgad, Mohamed; Stovgaard, Elisabeth Specht; Balslev, Eva; Thagaard, Jeppe; Chen, Weijie; Dudgeon, Sarah; Sharma, Ashish; Kerner, Jennifer K.; Denkert, Carsten; Yuan, Yinyin; AbdulJabbar, Khalid; Wienert, Stephan; Savas, Peter; Voorwerk, Leonie; Beck, Andrew H.; Madabhushi, Anant; Hartman, Johan; Sebastian, Manu M.; Horlings, Hugo M.; Hudeček, Jan; Ciompi, Francesco; Moore, David A.; Singh, Rajendra; Roblin, Elvire; Balancin, Marcelo Luiz; Mathieu, Marie-Christine; Lennerz, Jochen K.; Kirtani, Pawan; Chen, I-Chun; Braybrooke, Jeremy P.; Pruneri, Giancarlo; Demaria, Sandra; Adams, Sylvia; Schnitt, Stuart J.; Lakhani, Sunil R.; Rojo, Federico; Comerma, Laura; Badve, Sunil S.; Khojasteh, Mehrnoush; Symmans, W. Fraser; Sotiriou, Christos; Gonzalez-Ericsson, Paula; Pogue-Geile, Katherine L.; Kim, Rim S.; Rimm, David L.; Viale, Giuseppe; Hewitt, Stephen M.; Bartlett, John M. S.; Penault-Llorca, Frédérique; Goel, Shom; Lien, Huang-Chun; Loibl, Sibylle; Kos, Zuzana; Loi, Sherene; Hanna, Matthew G.; Michiels, Stefan; Kok, Marleen; Nielsen, Torsten O.; Lazar, Alexander J.; Bago-Horvath, Zsuzsanna; Kooreman, Loes F. S.; Van der Laak, Jeroen A.W. M.; Saltz, Joel; Gallas, Brandon D.; Kurkure, Uday; Barnes, Michael; Salgado, Roberto; Cooper, Lee A. D.; International Immuno-Oncology Biomarker Working Group; Pathology and Laboratory Medicine, School of MedicineAssessment of tumor-infiltrating lymphocytes (TILs) is increasingly recognized as an integral part of the prognostic workflow in triple-negative (TNBC) and HER2-positive breast cancer, as well as many other solid tumors. This recognition has come about thanks to standardized visual reporting guidelines, which helped to reduce inter-reader variability. Now, there are ripe opportunities to employ computational methods that extract spatio-morphologic predictive features, enabling computer-aided diagnostics. We detail the benefits of computational TILs assessment, the readiness of TILs scoring for computational assessment, and outline considerations for overcoming key barriers to clinical translation in this arena. Specifically, we discuss: 1. ensuring computational workflows closely capture visual guidelines and standards; 2. challenges and thoughts standards for assessment of algorithms including training, preanalytical, analytical, and clinical validation; 3. perspectives on how to realize the potential of machine learning models and to overcome the perceptual and practical limits of visual scoring.Item Standardization of pathologic evaluation and reporting of postneoadjuvant specimens in clinical trials of breast cancer: recommendations from an international working group(Nature, 2015-07) Provenzano, Elena; Bossuyt, Veerle; Viale, Giuseppe; Cameron, David; Badve, Sunil; Denkert, Carsten; MacGrogan, Gaëtan; Penault-Llorca, Frédérique; Boughey, Judy; Curigliano, Giuseppe; Dixon, J. Michael; Esserman, Laura; Fastner, Gerd; Kuehn, Thorsten; Peintinger, Florentia; von Minckwitz, Gunter; White, Julia; Yang, Wei; Symmans, W. Fraser; Department of Pathology & Laboratory Medicine, IU School of MedicineNeoadjuvant systemic therapy is being used increasingly in the treatment of early-stage breast cancer. Response, in the form of pathological complete response, is a validated and evaluable surrogate end point of survival after neoadjuvant therapy. Thus, pathological complete response has become a primary end point for clinical trials. However, there is a current lack of uniformity in the definition of pathological complete response. A review of standard operating procedures used by 28 major neoadjuvant breast cancer trials and/or 25 sites involved in such trials identified marked variability in specimen handling and histologic reporting. An international working group was convened to develop practical recommendations for the pathologic assessment of residual disease in neoadjuvant clinical trials of breast cancer and information expected from pathology reports. Systematic sampling of areas identified by informed mapping of the specimen and close correlation with radiological findings is preferable to overly exhaustive sampling, and permits taking tissue samples for translational research. Controversial areas are discussed, including measurement of lesion size, reporting of lymphovascular space invasion and the presence of isolated tumor cells in lymph nodes after neoadjuvant therapy, and retesting of markers after treatment. If there has been a pathological complete response, this must be clearly stated, and the presence/absence of residual ductal carcinoma in situ must be described. When there is residual invasive carcinoma, a comment must be made as to the presence/absence of chemotherapy effect in the breast and lymph nodes. The Residual Cancer Burden is the preferred method for quantifying residual disease in neoadjuvant clinical trials in breast cancer; other methods can be included per trial protocols and regional preference. Posttreatment tumor staging using the Tumor–Node–Metastasis system should be included. These recommendations for standardized pathological evaluation and reporting of neoadjuvant breast cancer specimens should improve prognostication for individual patients and allow comparison of treatment outcomes within and across clinical trials.