- Browse by Author
Browsing by Author "Sutton, V. Reid"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Lessons learned from additional research analyses of unsolved clinical exome cases(BioMed Central, 2017-03-21) Eldomery, Mohammad K.; Coban-Akdemir, Zeynep; Harel, Tamar; Rosenfeld, Jill A.; Gambin, Tomasz; Stray-Pedersen, Asbjørg; Küry, Sébastien; Mercier, Sandra; Lessel, Davor; Denecke, Jonas; Wiszniewski, Wojciech; Penney, Samantha; Liu, Pengfei; Bi, Weimin; Lalani, Seema R.; Schaaf, Christian P.; Wangler, Michael F.; Bacino, Carlos A.; Lewis, Richard Alan; Potocki, Lorraine; Graham, Brett H.; Belmont, John W.; Scaglia, Fernando; Orange, Jordan S.; Jhangiani, Shalini N.; Chiang, Theodore; Doddapaneni, Harsha; Hu, Jianhong; Muzny, Donna M.; Xia, Fan; Beaudet, Arthur L.; Boerwinkle, Eric; Eng, Christine M.; Plon, Sharon E.; Sutton, V. Reid; Gibbs, Richard A.; Posey, Jennifer E.; Yang, Yaping; Lupski, James R.; Department of Pathology and Laboratory Medicine, IU School of MedicineBACKGROUND: Given the rarity of most single-gene Mendelian disorders, concerted efforts of data exchange between clinical and scientific communities are critical to optimize molecular diagnosis and novel disease gene discovery. METHODS: We designed and implemented protocols for the study of cases for which a plausible molecular diagnosis was not achieved in a clinical genomics diagnostic laboratory (i.e. unsolved clinical exomes). Such cases were recruited to a research laboratory for further analyses, in order to potentially: (1) accelerate novel disease gene discovery; (2) increase the molecular diagnostic yield of whole exome sequencing (WES); and (3) gain insight into the genetic mechanisms of disease. Pilot project data included 74 families, consisting mostly of parent-offspring trios. Analyses performed on a research basis employed both WES from additional family members and complementary bioinformatics approaches and protocols. RESULTS: Analysis of all possible modes of Mendelian inheritance, focusing on both single nucleotide variants (SNV) and copy number variant (CNV) alleles, yielded a likely contributory variant in 36% (27/74) of cases. If one includes candidate genes with variants identified within a single family, a potential contributory variant was identified in a total of ~51% (38/74) of cases enrolled in this pilot study. The molecular diagnosis was achieved in 30/63 trios (47.6%). Besides this, the analysis workflow yielded evidence for pathogenic variants in disease-associated genes in 4/6 singleton cases (66.6%), 1/1 multiplex family involving three affected siblings, and 3/4 (75%) quartet families. Both the analytical pipeline and the collaborative efforts between the diagnostic and research laboratories provided insights that allowed recent disease gene discoveries (PURA, TANGO2, EMC1, GNB5, ATAD3A, and MIPEP) and increased the number of novel genes, defined in this study as genes identified in more than one family (DHX30 and EBF3). CONCLUSION: An efficient genomics pipeline in which clinical sequencing in a diagnostic laboratory is followed by the detailed reanalysis of unsolved cases in a research environment, supplemented with WES data from additional family members, and subject to adjuvant bioinformatics analyses including relaxed variant filtering parameters in informatics pipelines, can enhance the molecular diagnostic yield and provide mechanistic insights into Mendelian disorders. Implementing these approaches requires collaborative clinical molecular diagnostic and research efforts.Item Phenotypic expansion of POGZ-related intellectual disability syndrome (White-Sutton syndrome)(Wiley, 2020-01) Batzir, Nurit Assia; Posey, Jennifer E.; Song, Xiaofei; Akdemir, Zeynep Coban; Rosenfeld, Jill A.; Brown, Chester W.; Chen, Emily; Holtrop, Shannon G.; Mizerik, Elizabeth; Moreno, Margarita Nieto; Payne, Katelyn; Raas-Rothschild, Annick; Scott, Richard; Vernon, Hilary J.; Zadeh, Neda; Lupski, James R.; Sutton, V. Reid; Neurology, School of MedicineWhite-Sutton syndrome (WHSUS) is a recently-identified genetic disorder resulting from de novo heterozygous pathogenic variants in POGZ. Thus far, over 50 individuals have been reported worldwide, however phenotypic characterization and data regarding the natural history are still incomplete. Here we report the clinical features of 22 individuals with 21 unique loss of function POGZ variants. We observed a broad spectrum of intellectual disability and/or developmental delay with or without autism, and speech delay in all individuals. Other common problems included ocular abnormalities, hearing loss and gait abnormalities. A validated sleep disordered breathing questionnaire identified symptoms of obstructive sleep apnea in 4/12 (33%) individuals. A higher-than-expected proportion of cases also had gastrointestinal phenotypes, both functional and anatomical, as well as genitourinary anomalies. In line with previous publications, we observed an increased body mass index (BMI) z-score compared to the general population (mean 0.59, median 0.9; p 0.0253). Common facial features included microcephaly, broad forehead, midface hypoplasia, triangular mouth, broad nasal root and flat nasal bridge. Analysis of the Baylor Genetics clinical laboratory database revealed that POGZ variants were implicated in approximately 0.14% of cases who underwent clinical exome sequencing for neurological indications with or without involvement of other body systems. This study describes a greater allelic series and expands the phenotypic spectrum of this new syndromic form of intellectual disability and autism.