- Browse by Author
Browsing by Author "Susztak, Katalin"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item APOL1 Risk Variants, Acute Kidney Injury, and Death in Participants With African Ancestry Hospitalized With COVID-19 From the Million Veteran Program(American Medical Association, 2022) Hung, Adriana M.; Shah, Shailja C.; Bick, Alexander G.; Yu, Zhihong; Chen, Hua-Chang; Hunt, Christine M.; Wendt, Frank; Wilson, Otis; Greevy, Robert A.; Chung, Cecilia P.; Suzuki, Ayako; Ho, Yuk-Lam; Akwo, Elvis; Polimanti, Renato; Zhou, Jin; Reaven, Peter; Tsao, Philip S.; Gaziano, J. Michael; Huffman, Jennifer E.; Joseph, Jacob; Luoh, Shiuh-Wen; Iyengar, Sudha; Chang, Kyong-Mi; Casas, Juan P.; Matheny, Michael E.; O'Donnell, Christopher J.; Cho, Kelly; Tao, Ran; Susztak, Katalin; Robinson-Cohen, Cassianne; Tuteja, Sony; Siew, Edward D.; VA Million Veteran Program COVID-19 Science Initiative; Medicine, School of MedicineImportance: Coronavirus disease 2019 (COVID-19) confers significant risk of acute kidney injury (AKI). Patients with COVID-19 with AKI have high mortality rates. Objective: Individuals with African ancestry with 2 copies of apolipoprotein L1 (APOL1) variants G1 or G2 (high-risk group) have significantly increased rates of kidney disease. We tested the hypothesis that the APOL1 high-risk group is associated with a higher-risk of COVID-19-associated AKI and death. Design, setting, and participants: This retrospective cohort study included 990 participants with African ancestry enrolled in the Million Veteran Program who were hospitalized with COVID-19 between March 2020 and January 2021 with available genetic information. Exposures: The primary exposure was having 2 APOL1 risk variants (RV) (APOL1 high-risk group), compared with having 1 or 0 risk variants (APOL1 low-risk group). Main outcomes and measures: The primary outcome was AKI. The secondary outcomes were stages of AKI severity and death. Multivariable logistic regression analyses adjusted for preexisting comorbidities, medications, and inpatient AKI risk factors; 10 principal components of ancestry were performed to study these associations. We performed a subgroup analysis in individuals with normal kidney function prior to hospitalization (estimated glomerular filtration rate ≥60 mL/min/1.73 m2). Results: Of the 990 participants with African ancestry, 905 (91.4%) were male with a median (IQR) age of 68 (60-73) years. Overall, 392 (39.6%) patients developed AKI, 141 (14%) developed stages 2 or 3 AKI, 28 (3%) required dialysis, and 122 (12.3%) died. One hundred twenty-five (12.6%) of the participants were in the APOL1 high-risk group. Patients categorized as APOL1 high-risk group had significantly higher odds of AKI (adjusted odds ratio [OR], 1.95; 95% CI, 1.27-3.02; P = .002), higher AKI severity stages (OR, 2.03; 95% CI, 1.37-2.99; P < .001), and death (OR, 2.15; 95% CI, 1.22-3.72; P = .007). The association with AKI persisted in the subgroup with normal kidney function (OR, 1.93; 95% CI, 1.15-3.26; P = .01). Data analysis was conducted between February 2021 and April 2021. Conclusions and relevance: In this cohort study of veterans with African ancestry hospitalized with COVID-19 infection, APOL1 kidney risk variants were associated with higher odds of AKI, AKI severity, and death, even among individuals with prior normal kidney function.Item Emerging Role of Clinical Genetics in CKD(Elsevier, 2022-02-11) Devarajan, Prasad; Chertow, Glenn M.; Susztak, Katalin; Levin, Adeera; Agarwal, Rajiv; Stenvinkel, Peter; Chapman, Arlene B.; Warady, Bradley A.; Medicine, School of MedicineChronic kidney disease (CKD) afflicts 15% of adults in the United States, of whom 25% have a family history. Genetic testing is supportive in identifying and possibly confirming diagnoses of CKD, thereby guiding care. Advances in the clinical genetic evaluation include next-generation sequencing with targeted gene panels, whole exome sequencing, and whole genome sequencing. These platforms provide DNA sequence reads with excellent coverage throughout the genome and have identified novel genetic causes of CKD. New pathologic genetic variants identified in previously unrecognized biological pathways have elucidated disease mechanisms underlying CKD etiologies, potentially establishing prognosis and guiding treatment selection. Molecular diagnoses using genetic sequencing can detect rare, potentially treatable mutations, avoid misdiagnoses, guide selection of optimal therapy, and decrease the risk of unnecessary and potentially harmful interventions. Genetic testing has been widely adopted in pediatric nephrology; however, it is less frequently used to date in adult nephrology. Extension of clinical genetic approaches to adult patients may achieve similar benefits in diagnostic refinement and treatment selection. This review aimed to identify clinical CKD phenotypes that may benefit the most from genetic testing, outline the commonly available platforms, and provide examples of successful deployment of these approaches in CKD.Item Genetic Variants Associated With Mineral Metabolism Traits in Chronic Kidney Disease(Oxford University Press, 2022) Laster, Marciana L.; Rowan, Bryce; Chen, Hua-Chang; Schwantes-An, Tae-Hwi; Sheng, Xin; Friedman, Peter A.; Ikizler, T. Alp; Sinshiemer, Janet S.; Ix, Joachim H.; Susztak, Katalin; de Boer, Ian H.; Kestenbaum, Bryan; Hung, Adriana; Moe, Sharon M.; Perwad, Farzana; Robinson-Cohen, Cassianne; Medicine, School of MedicineContext: Chronic kidney disease (CKD) causes multiple interrelated disturbances in mineral metabolism. Genetic studies in the general population have identified common genetic variants associated with circulating phosphate, calcium, parathyroid hormone (PTH), and fibroblast growth factor 23 (FGF23). Objective: In this study we aimed to discover genetic variants associated with circulating mineral markers in CKD. Methods: We conducted candidate single-nucleotide variation (SNV) analysis in 3027 participants in the multiethnic Chronic Renal Insufficiency Cohort (CRIC) to determine the associations between SNVs and circulating levels of mineral markers. Results: SNVs adjacent to or within genes encoding the regulator of G protein-coupled signaling 14 (RGS14) and the calcium-sensing receptor (CASR) were associated with levels of mineral metabolites. The strongest associations (P < .001) were at rs4074995 (RGS14) for phosphate (0.09 mg/dL lower per minor allele) and FGF23 (8.6% lower), and at rs1801725 (CASR) for calcium (0.12 mg/dL higher). In addition, the prevalence of hyperparathyroidism differed by rs4074995 (RGS14) genotype (chi-square P < .0001). Differential inheritance by race was noted for the minor allele of RGS14. Expression quantitative loci (eQTL) analysis showed that rs4074995 was associated with lower RGS14 gene expression in glomeruli (P = 1.03 × 10-11) and tubules (P = 4.0 × 10-4). Conclusion: We evaluated genetic variants associated with mineral metabolism markers in a CKD population. Participants with CKD and the minor allele of rs4074995 (RGS14) had lower phosphorus, lower plasma FGF23, and lower prevalence of hyperparathyroidism. The minor allele of RGS14 was also associated with lower gene expression in the kidney. Further studies are needed to elucidate the effect of rs4074995 on the pathogenesis of disordered mineral metabolism in CKD.