- Browse by Author
Browsing by Author "Sunaert, Stefan"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Brain gray matter reduction and premature brain aging after breast cancer chemotherapy: a longitudinal multicenter data pooling analysis(Springer, 2023) de Ruiter, Michiel B.; Deardorff, Rachael L.; Blommaert, Jeroen; Chen, Bihong T.; Dumas, Julie A.; Schagen, Sanne B.; Sunaert, Stefan; Wang, Lei; Cimprich, Bernadine; Peltier, Scott; Dittus, Kim; Newhouse, Paul A.; Silverman, Daniel H.; Schroyen, Gwen; Deprez, Sabine; Saykin, Andrew J.; McDonald, Brenna C.; Radiology and Imaging Sciences, School of MedicineBrain gray matter (GM) reductions have been reported after breast cancer chemotherapy, typically in small and/or cross-sectional cohorts, most commonly using voxel-based morphometry (VBM). There has been little examination of approaches such as deformation-based morphometry (DBM), machine-learning-based brain aging metrics, or the relationship of clinical and demographic risk factors to GM reduction. This international data pooling study begins to address these questions. Participants included breast cancer patients treated with (CT+, n = 183) and without (CT-, n = 155) chemotherapy and noncancer controls (NC, n = 145), scanned pre- and post-chemotherapy or comparable intervals. VBM and DBM examined GM volume. Estimated brain aging was compared to chronological aging. Correlation analyses examined associations between VBM, DBM, and brain age, and between neuroimaging outcomes, baseline age, and time since chemotherapy completion. CT+ showed longitudinal GM volume reductions, primarily in frontal regions, with a broader spatial extent on DBM than VBM. CT- showed smaller clusters of GM reduction using both methods. Predicted brain aging was significantly greater in CT+ than NC, and older baseline age correlated with greater brain aging. Time since chemotherapy negatively correlated with brain aging and annual GM loss. This large-scale data pooling analysis confirmed findings of frontal lobe GM reduction after breast cancer chemotherapy. Milder changes were evident in patients not receiving chemotherapy. CT+ also demonstrated premature brain aging relative to NC, particularly at older age, but showed evidence for at least partial GM recovery over time. When validated in future studies, such knowledge could assist in weighing the risks and benefits of treatment strategies.Item Shared heritability of human face and brain shape(Springer Nature, 2021) Naqvi, Sahin; Sleyp, Yoeri; Hoskens, Hanne; Indencleef, Karlijne; Spence, Jeffrey P.; Bruffaerts, Rose; Radwan, Ahmed; Eller, Ryan J.; Richmond, Stephen; Shriver, Mark D.; Shaffer, John R.; Weinberg, Seth M.; Walsh, Susan; Thompson, James; Pritchard, Jonathan K.; Sunaert, Stefan; Peeters, Hilde; Wysocka, Joanna; Claes, Peter; Biology, School of ScienceEvidence from model organisms and clinical genetics suggests coordination between the developing brain and face, but the role of this link in common genetic variation remains unknown. We performed a multivariate genome-wide association study of cortical surface morphology in 19,644 individuals of European ancestry, identifying 472 genomic loci influencing brain shape, of which 76 are also linked to face shape. Shared loci include transcription factors involved in craniofacial development, as well as members of signaling pathways implicated in brain-face cross-talk. Brain shape heritability is equivalently enriched near regulatory regions active in either forebrain organoids or facial progenitors. However, we do not detect significant overlap between shared brain-face genome-wide association study signals and variants affecting behavioral-cognitive traits. These results suggest that early in embryogenesis, the face and brain mutually shape each other through both structural effects and paracrine signaling, but this interplay may not impact later brain development associated with cognitive function.