- Browse by Author
Browsing by Author "Sun, Ying"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Association between Aldehyde Dehydrogenase 2 Glu504Lys Polymorphism and Alcoholic Liver Disease(Elsevier, 2018) Chang, Binxia; Hao, Shuli; Zhang, Longyu; Gao, Miaomiao; Sun, Ying; Huang, Ang; Teng, Guangju; Li, Baosen; Crabb, David W.; Kusumanchi, Praveen; Wang, Li; Liangpunsakul, Suthat; Zou, Zhengsheng; Medicine, School of MedicineBackground Only a subset of patients with excessive alcohol use develop alcoholic liver disease (ALD); though the exact mechanism is not completely understood. Once ingested, alcohol is metabolized by 2 key oxidative enzymes, alcohol (ADH) and aldehyde dehydrogenase (ALDH). There are 2 major ALDH isoforms, cytosolic and mitochondrial, encoded by the aldehyde ALDH1 and ALDH2 genes, respectively. The ALDH2 gene was hypothesized to alter genetic susceptibility to alcohol dependence and alcohol-induced liver diseases. The aim of this study is to determine the association between aldehyde dehydrogenase 2 (rs671) glu504lys polymorphism and ALD. Methods ALDH2 genotype was performed in 535 healthy controls and 281 patients with ALD. Results The prevalence of the common form of the SNP rs671, 504glu (glu/glu) was significantly higher in patients with ALD (95.4%) compared to that of controls (73.7%, p<0.0001). Among controls, 23.7% had heterozygous (glu/lys) genotype when compared to 4.6% in those with ALD (OR 0.16, 95%CI 0.09–0.28). The allele frequency for 504lys allele in patients with ALD was 2.3%; compared to 14.5% in healthy controls (OR 0.13, 95%CI 0.07–0.24). Conclusions Patients with ALDH2 504lys variant were less associated with ALD compared to those with ALDH2 504glu using both genotypic and allelic analyses.Item Characterization of lunar crust with moon mineralogy mapper data(2015-06-09) Sun, Ying; Lin, Li; Bird, Broxton; Johnson, Daniel; Licht, Kathy; Gilhooly, William P.This dissertation has three main focuses: (1) identify the distribution of a new rock type (Mg-spinel lithology) on the Moon and explore the likely petrogenesis of Mg-spinel; (2) investigate the presence of olivine in the crater central peaks and analyze the sources of olivine; (3) determine the compositional variations of lunar crust with depth, and establish a new model to describe the structure of the lunar crust.Item From remotely sensed solar-induced chlorophyll fluorescence to ecosystem structure, function, and service: Part I—Harnessing theory(Wiley, 2023-06) Sun, Ying; Gu, Lianhong; Wen, Jiaming; van der Tol, Christiaan; Porcar-Castell, Albert; Joiner, Joanna; Chang, Christine Y.; Magney, Troy; Wang, Lixin; Hu, Leiqiu; Rascher, Uwe; Zarco-Tejada, Pablo; Barrett, Christopher B.; Lai, Jiameng; Han, Jimei; Luo, Zhenqi; Earth Science, School of ScienceSolar-induced chlorophyll fluorescence (SIF) is a remotely sensed optical signal emitted during the light reactions of photosynthesis. The past two decades have witnessed an explosion in availability of SIF data at increasingly higher spatial and temporal resolutions, sparking applications in diverse research sectors (e.g., ecology, agriculture, hydrology, climate, and socioeconomics). These applications must deal with complexities caused by tremendous variations in scale and the impacts of interacting and superimposing plant physiology and three-dimensional vegetation structure on the emission and scattering of SIF. At present, these complexities have not been overcome. To advance future research, the two companion reviews aim to (1) develop an analytical framework for inferring terrestrial vegetation structures and function that are tied to SIF emission, (2) synthesize progress and identify challenges in SIF research via the lens of multi-sector applications, and (3) map out actionable solutions to tackle these challenges and offer our vision for research priorities over the next 5–10 years based on the proposed analytical framework. This paper is the first of the two companion reviews, and theory oriented. It introduces a theoretically rigorous yet practically applicable analytical framework. Guided by this framework, we offer theoretical perspectives on three overarching questions: (1) The forward (mechanism) question—How are the dynamics of SIF affected by terrestrial ecosystem structure and function? (2) The inference question: What aspects of terrestrial ecosystem structure, function, and service can be reliably inferred from remotely sensed SIF and how? (3) The innovation question: What innovations are needed to realize the full potential of SIF remote sensing for real-world applications under climate change? The analytical framework elucidates that process complexity must be appreciated in inferring ecosystem structure and function from the observed SIF; this framework can serve as a diagnosis and inference tool for versatile applications across diverse spatial and temporal scales.Item From remotely-sensed solar-induced chlorophyll fluorescence to ecosystem structure, function, and service: Part II—Harnessing data(Wiley, 2023-06) Sun, Ying; Wen, Jiaming; Gu, Lianhong; Joiner, Joanna; Chang, Christine Y.; van der Tol, Christiaan; Porcar-Castell, Albert; Magney, Troy; Wang, Lixin; Hu, Leiqiu; Rascher, Uwe; Zarco-Tejada, Pablo; Barrett, Christopher B.; Lai, Jiameng; Han, Jimei; Luo, Zhenqi; Earth Science, School of ScienceAlthough our observing capabilities of solar-induced chlorophyll fluorescence (SIF) have been growing rapidly, the quality and consistency of SIF datasets are still in an active stage of research and development. As a result, there are considerable inconsistencies among diverse SIF datasets at all scales and the widespread applications of them have led to contradictory findings. The present review is the second of the two companion reviews, and data oriented. It aims to (1) synthesize the variety, scale, and uncertainty of existing SIF datasets, (2) synthesize the diverse applications in the sector of ecology, agriculture, hydrology, climate, and socioeconomics, and (3) clarify how such data inconsistency superimposed with the theoretical complexities laid out in (Sun et al., 2023) may impact process interpretation of various applications and contribute to inconsistent findings. We emphasize that accurate interpretation of the functional relationships between SIF and other ecological indicators is contingent upon complete understanding of SIF data quality and uncertainty. Biases and uncertainties in SIF observations can significantly confound interpretation of their relationships and how such relationships respond to environmental variations. Built upon our syntheses, we summarize existing gaps and uncertainties in current SIF observations. Further, we offer our perspectives on innovations needed to help improve informing ecosystem structure, function, and service under climate change, including enhancing in-situ SIF observing capability especially in “data desert” regions, improving cross-instrument data standardization and network coordination, and advancing applications by fully harnessing theory and data.Item Massive crop expansion threatens agriculture and water sustainability in northwestern China(IOP, 2022-02-21) Lai, Jiameng; Li, Yanan; Chen, Jianli; Niu, Guo-Yue; Lin, Peirong; Li, Qi; Wang, Lixin; Han, Jimei; Luo, Zhenqi; Sun, Ying; Earth and Environmental Sciences, School of ScienceNorthwestern China (NWC) is among the major global hotspots undergoing massive terrestrial water storage (TWS) depletion. Yet driver(s) underlying such region-wide depletion remain controversial, i.e. warming-induced glaciermelting versus anthropogenic activities. Reconciling this controversy is the core initial step to guide policymaking to combat the dual challenges in agriculture production and water scarcity in the vastly dry NWC toward sustainable development. Utilizing diverse observations, we found persistent cropland expansion by >1.2 × 104 km2 since 2003, leading to growth of 59.9% in irrigated area and 19.5% in agricultural water use, despite a steady enhancement in irrigation efficiency. Correspondingly, a substantially faster evapotranspiration (ET) increase occurred in crop expansion areas, whereas precipitation exhibited no long-term trend. Counterfactual analyses suggest that the region-wide TWS depletion is unlikely to have occurred without an increase in crop expansion-driven ET even in the presence of glaciermelting. These findings imply that sustainable water management is critically needed to ensure agriculture and water security in NWC.