- Browse by Author
Browsing by Author "Sun, Yifan"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Atractylenolide I enhances responsiveness to immune checkpoint blockade therapy by activating tumor antigen presentation(The American Society for Clinical Investigation, 2021-05-17) Xu, Hanchen; Van der Jeught, Kevin; Zhou, Zhuolong; Zhang, Lu; Yu, Tao; Sun, Yifan; Li, Yujing; Wan, Changlin; So, Ka Man; Liu, Degang; Frieden, Michael; Fang, Yuanzhang; Mosley, Amber L.; He, Xiaoming; Zhang, Xinna; Sandusky, George E.; Liu, Yunlong; Meroueh, Samy O.; Zhang, Chi; Wijeratne, Aruna B.; Huang, Cheng; Ji, Guang; Lu, Xiongbin; Medical and Molecular Genetics, School of MedicineOne of the primary mechanisms of tumor cell immune evasion is the loss of antigenicity, which arises due to lack of immunogenic tumor antigens as well as dysregulation of the antigen processing machinery. In a screen for small-molecule compounds from herbal medicine that potentiate T cell–mediated cytotoxicity, we identified atractylenolide I (ATT-I), which substantially promotes tumor antigen presentation of both human and mouse colorectal cancer (CRC) cells and thereby enhances the cytotoxic response of CD8+ T cells. Cellular thermal shift assay (CETSA) with multiplexed quantitative mass spectrometry identified the proteasome 26S subunit non–ATPase 4 (PSMD4), an essential component of the immunoproteasome complex, as a primary target protein of ATT-I. Binding of ATT-I with PSMD4 augments the antigen-processing activity of immunoproteasome, leading to enhanced MHC-I–mediated antigen presentation on cancer cells. In syngeneic mouse CRC models and human patient–derived CRC organoid models, ATT-I treatment promotes the cytotoxicity of CD8+ T cells and thus profoundly enhances the efficacy of immune checkpoint blockade therapy. Collectively, we show here that targeting the function of immunoproteasome with ATT-I promotes tumor antigen presentation and empowers T cell cytotoxicity, thus elevating the tumor response to immunotherapy.Item Development of Cancer-Genomics-Guided Precision Immunotherapy for Triple-Negative Breast Cancer(2023-05) Sun, Yifan; Lu, Xiongbin; Kaplan, Mark H.; Hopewell, Emily L.; Zhang, Chi; Yang, KaiTriple-negative breast cancer (TNBC), which accounts for 15-20% of all breast cancers, is highly aggressive and metastatic with the poorest overall rates. While surgery, radiation, and chemotherapy remain the main treatment options, TNBC represents an unmet medical need for better treatment strategies. Tremendous efforts have been made to develop effective therapies over the past years. However, TNBC treatment options are still very limited due to the lack of good drug targets and the low response rate of current therapies. In this study, we developed two different strategies to treat TNBC based on its cancer genomic features: 1) heterozygous loss of chromosome 17p (17p loss) and 2) high mutation load. 17p loss is one of the most frequent genomic events in breast cancer including TNBC, rendering cancer cells vulnerable to the inhibition of POLR2A via α-amanitin (POLR2A-specific inhibitor). Here, we developed a new drug T-Ama (α-amanitin-conjugated trastuzumab) targeting HER2-low TNBC with 17p loss by combining the effects of α-amanitin and trastuzumab (HER2+ breast cancer therapy). Our results showed that T-Ama exhibited superior efficacy in treating HER2-low TNBC with 17p loss in vitro and in vivo, and surprisingly induced immunogenic cell death (ICD) which further enhanced T cell infiltration and cytotoxicity levels and delivered greater efficacy in combination with immune checkpoint blockade therapy. Collectively, the therapeutic window created by 17p loss and HER2 expression will make HER2-low TNBC clinically feasible targets of T-Ama. As another genetic feature of TNBC, the higher genomic instability and mutational burden results in more neoantigens presented on MHC-I, along with the higher level of tumor-infiltrating T cells, making TNBC a perfect model for immunotherapy compared to the other breast cancer subtypes. Here, we designed a deconvolution-algorithm-derived library screening to find new therapeutic targets and identified PIK3C2α as a key player that determines MHC-I turnover and reduces the MHC-I-restricted antigen presentation on tumor cells. In preclinical models, inhibition of PIK3C2α profoundly suppressed breast tumor growth, increased tumor-infiltrating CD8+ T cells, and showed high potential enhancing the efficacy of anti-PD-1 therapy, suggesting that PIK3C2α is a potential therapeutic target for TNBC immunotherapy.Item ICTD: A semi-supervised cell type identification and deconvolution method for multi-omics data(BioRxiv, 2019) Chang, Wennan; Wan, Changlin; Lu, Xiaoyu; Tu, Szu-wei; Sun, Yifan; Zhang, Xinna; Zang, Yong; Zhang, Anru; Huang, Kun; Liu, Yunlong; Lu, Xiongbin; Cao, Sha; Zhang, Chi; Medical and Molecular Genetics, School of MedicineWe developed a novel deconvolution method, namely Inference of Cell Types and Deconvolution (ICTD) that addresses the fundamental issue of identifiability and robustness in current tissue data deconvolution problem. ICTD provides substantially new capabilities for omics data based characterization of a tissue microenvironment, including (1) maximizing the resolution in identifying resident cell and sub types that truly exists in a tissue, (2) identifying the most reliable marker genes for each cell type, which are tissue and data set specific, (3) handling the stability problem with co-linear cell types, (4) co-deconvoluting with available matched multi-omics data, and (5) inferring functional variations specific to one or several cell types. ICTD is empowered by (i) rigorously derived mathematical conditions of identifiable cell type and cell type specific functions in tissue transcriptomics data and (ii) a semi supervised approach to maximize the knowledge transfer of cell type and functional marker genes identified in single cell or bulk cell data in the analysis of tissue data, and (iii) a novel unsupervised approach to minimize the bias brought by training data. Application of ICTD on real and single cell simulated tissue data validated that the method has consistently good performance for tissue data coming from different species, tissue microenvironments, and experimental platforms. Other than the new capabilities, ICTD outperformed other state-of-the-art devolution methods on prediction accuracy, the resolution of identifiable cell, detection of unknown sub cell types, and assessment of cell type specific functions. The premise of ICTD also lies in characterizing cell-cell interactions and discovering cell types and prognostic markers that are predictive of clinical outcomes.Item MAL2 drives immune evasion in breast cancer by suppressing tumor antigen presentation(The American Society for Clinical Investigation, 2021-01-07) Fang, Yuanzhang; Wang, Lifei; Wan, Changlin; Sun, Yifan; Van der Jeught, Kevin; Zhou, Zhuolong; Dong, Tianhan; So, Ka Man; Yu, Tao; Li, Yujing; Eyvani, Haniyeh; Colter, Austyn B.; Dong, Edward; Cao, Sha; Wang, Jin; Schneider, Bryan P.; Sandusky, George E.; Liu, Yunlong; Zhang, Chi; Lu, Xiongbin; Zhang, Xinna; Medical and Molecular Genetics, School of MedicineImmune evasion is a pivotal event in tumor progression. To eliminate human cancer cells, current immune checkpoint therapy is set to boost CD8+ T cell-mediated cytotoxicity. However, this action is eventually dependent on the efficient recognition of tumor-specific antigens via T cell receptors. One primary mechanism by which tumor cells evade immune surveillance is to downregulate their antigen presentation. Little progress has been made toward harnessing potential therapeutic targets for enhancing antigen presentation on the tumor cell. Here, we identified MAL2 as a key player that determines the turnover of the antigen-loaded MHC-I complex and reduces the antigen presentation on tumor cells. MAL2 promotes the endocytosis of tumor antigens via direct interaction with the MHC-I complex and endosome-associated RAB proteins. In preclinical models, depletion of MAL2 in breast tumor cells profoundly enhanced the cytotoxicity of tumor-infiltrating CD8+ T cells and suppressed breast tumor growth, suggesting that MAL2 is a potential therapeutic target for breast cancer immunotherapy.Item ST2 as checkpoint target for colorectal cancer immunotherapy(American Society for Clinical Investigation, 2020-05-07) Jeught, Kevin Van der; Sun, Yifan; Fang, Yuanzhang; Zhou, Zhuolong; Jiang, Hua; Yu, Tao; Yang, Jinfeng; Kamocka, Malgorzata M.; So, Ka Man; Li, Yujing; Eyvani, Haniyeh; Sandusky, George E.; Frieden, Michael; Braun, Harald; Beyaert, Rudi; He, Xiaoming; Zhang, Xinna; Zhang, Chi; Paczesny, Sophie; Lu, Xiongbin; Pediatrics, School of MedicineImmune checkpoint blockade immunotherapy delivers promising clinical results in colorectal cancer (CRC). However, only a fraction of cancer patients develop durable responses. The tumor microenvironment (TME) negatively impacts tumor immunity and subsequently clinical outcomes. Therefore, there is a need to identify other checkpoint targets associated with the TME. Early-onset factors secreted by stromal cells as well as tumor cells often help recruit immune cells to the TME, among which are alarmins such as IL-33. The only known receptor for IL-33 is stimulation 2 (ST2). Here we demonstrated that high ST2 expression is associated with poor survival and is correlated with low CD8+ T cell cytotoxicity in CRC patients. ST2 is particularly expressed in tumor-associated macrophages (TAMs). In preclinical models of CRC, we demonstrated that ST2-expressing TAMs (ST2+ TAMs) were recruited into the tumor via CXCR3 expression and exacerbated the immunosuppressive TME; and that combination of ST2 depletion using ST2-KO mice with anti–programmed death 1 treatment resulted in profound growth inhibition of CRC. Finally, using the IL-33trap fusion protein, we suppressed CRC tumor growth and decreased tumor-infiltrating ST2+ TAMs. Together, our findings suggest that ST2 could serve as a potential checkpoint target for CRC immunotherapy.Item Targeted immunotherapy for HER2-low breast cancer with 17p loss(American Association for the Advancement of Science, 2021-02-10) Li, Yujing; Sun, Yifan; Kulke, Michael; Hechler, Torsten; Van der Jeught, Kevin; Dong, Tianhan; He, Bin; Miller, Kathy D.; Radovich, Milan; Schneider, Bryan P.; Pahl, Andreas; Zhang, Xinna; Lu, Xiongbin; Medical and Molecular Genetics, School of MedicineThe clinical challenge for treating HER2 (human epidermal growth factor receptor 2)-low breast cancer is the paucity of actionable drug targets. HER2-targeted therapy often has poor clinical efficacy for this disease due to the low level of HER2 protein on the cancer cell surface. We analyzed breast cancer genomics in the search for potential drug targets. Heterozygous loss of chromosome 17p is one of the most frequent genomic events in breast cancer, and 17p loss involves a massive deletion of genes including the tumor suppressor TP53 Our analyses revealed that 17p loss leads to global gene expression changes and reduced tumor infiltration and cytotoxicity of T cells, resulting in immune evasion during breast tumor progression. The 17p deletion region also includes POLR2A, a gene encoding the catalytic subunit of RNA polymerase II that is essential for cell survival. Therefore, breast cancer cells with heterozygous loss of 17p are extremely sensitive to the inhibition of POLR2A via a specific small-molecule inhibitor, α-amanitin. Here, we demonstrate that α-amanitin-conjugated trastuzumab (T-Ama) potentiated the HER2-targeted therapy and exhibited superior efficacy in treating HER2-low breast cancer with 17p loss. Moreover, treatment with T-Ama induced immunogenic cell death in breast cancer cells and, thereby, delivered greater efficacy in combination with immune checkpoint blockade therapy in preclinical HER2-low breast cancer models. Collectively, 17p loss not only drives breast tumorigenesis but also confers therapeutic vulnerabilities that may be used to develop targeted precision immunotherapy.Item Targeting 17q23 amplicon to overcome the resistance to anti-HER2 therapy in HER2+ breast cancer(Nature Research, 2018-11-09) Liu, Yunhua; Xu, Jiangsheng; Choi, Hyun Ho; Han, Cecil; Fang, Yuanzhang; Li, Yujing; Van der Jeught, Kevin; Xu, Hanchen; Zhang, Lu; Frieden, Michael; Wang, Lifei; Eyvani, Haniyeh; Sun, Yifan; Zhao, Gang; Zhang, Yuntian; Liu, Sheng; Wan, Jun; Huang, Cheng; Ji, Guang; Lu, Xiongbin; He, Xiaoming; Zhang, Xinna; Medical and Molecular Genetics, School of MedicineChromosome 17q23 amplification occurs in ~11% of human breast cancers. Enriched in HER2+ breast cancers, the 17q23 amplification is significantly correlated with poor clinical outcomes. In addition to the previously identified oncogene WIP1, we uncover an oncogenic microRNA gene, MIR21, in a majority of the WIP1-containing 17q23 amplicons. The 17q23 amplification results in aberrant expression of WIP1 and miR-21, which not only promotes breast tumorigenesis, but also leads to resistance to anti-HER2 therapies. Inhibiting WIP1 and miR-21 selectively inhibits the proliferation, survival and tumorigenic potential of the HER2+ breast cancer cells harboring 17q23 amplification. To overcome the resistance of trastuzumab-based therapies in vivo, we develop pH-sensitive nanoparticles for specific co-delivery of the WIP1 and miR-21 inhibitors into HER2+ breast tumors, leading to a profound reduction of tumor growth. These results demonstrate the great potential of the combined treatment of WIP1 and miR-21 inhibitors for the trastuzumab-resistant HER2+ breast cancers.Item Targeting DDX3X Triggers Antitumor Immunity via a dsRNA-Mediated Tumor-Intrinsic Type I Interferon Response(American Association for Cancer Research, 2021) Choi, Hyeongjwa; Kwon, Juntae; Cho, Min Soon; Sun, Yifan; Zheng, Xiaofeng; Wang, Jing; Bouker, Kerrie B.; Casey, John L.; Atkins, Michael B.; Toretsky, Jeffrey; Han, Cecil; Medical and Molecular Genetics, School of MedicineInduction of nucleic-acid sensing-mediated type I interferon (IFN) has emerged as a novel approach to activate the immune system against cancer. Here we show that the depletion of DEAD-box RNA helicase 3X (DDX3X) triggers a tumor-intrinsic type I IFN response in breast cancer cells. Depletion or inhibition of DDX3X activity led to aberrant cytoplasmic accumulation of cellular endogenous double-stranded RNAs (dsRNA), which triggered type I IFN production through the melanoma differentiation-associated gene 5 (MDA5)-mediated dsRNA sensing pathway. Furthermore, DDX3X interacted with dsRNA-editing ADAR1 and dual depletion of DDX3X and ADAR1 synergistically activated the cytosolic dsRNA pathway in breast cancer cells. Loss of DDX3X in mouse mammary tumors enhanced anti-tumor activity by increasing the tumor-intrinsic type I IFN response, antigen presentation, and tumor-infiltration of cytotoxic T and dendritic cells. These findings may lead to the development of a novel therapeutic approach for breast cancer by targeting DDX3X in combination with immune checkpoint blockade.