- Browse by Author
Browsing by Author "Sun, Shi-Gang"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Boosting Superior Lithium Storage Performance of Alloy‐Based Anode Materials via Ultraconformal Sb Coating–Derived Favorable Solid‐Electrolyte Interphase(Wiley, 2020-01) Xiong, Bing-Qing; Zhou, Xinwei; Xu, Gui-Liang; Liu, Yuzi; Zhu, Likun; Hu, Youcheng; Shen, Shou-Yu; Hong, Yu-Hao; Wan, Si-Cheng; Liu, Xiao-Chen; Liu, Xiang; Chen, Shengli; Huang, Ling; Sun, Shi-Gang; Amine, Khalil; Ke, Fu-Sheng; Mechanical and Energy Engineering, School of Engineering and TechnologyAlloy materials such as Si and Ge are attractive as high‐capacity anodes for rechargeable batteries, but such anodes undergo severe capacity degradation during discharge–charge processes. Compared to the over‐emphasized efforts on the electrode structure design to mitigate the volume changes, understanding and engineering of the solid‐electrolyte interphase (SEI) are significantly lacking. This work demonstrates that modifying the surface of alloy‐based anode materials by building an ultraconformal layer of Sb can significantly enhance their structural and interfacial stability during cycling. Combined experimental and theoretical studies consistently reveal that the ultraconformal Sb layer is dynamically converted to Li3Sb during cycling, which can selectively adsorb and catalytically decompose electrolyte additives to form a robust, thin, and dense LiF‐dominated SEI, and simultaneously restrain the decomposition of electrolyte solvents. Hence, the Sb‐coated porous Ge electrode delivers much higher initial Coulombic efficiency of 85% and higher reversible capacity of 1046 mAh g−1 after 200 cycles at 500 mA g−1, compared to only 72% and 170 mAh g−1 for bare porous Ge. The present finding has indicated that tailoring surface structures of electrode materials is an appealing approach to construct a robust SEI and achieve long‐term cycling stability for alloy‐based anode materials.Item In Situ Construction of an Ultrarobust and Lithiophilic Li-Enriched Li–N Nanoshield for High-Performance Ge-Based Anode Materials(ACS, 2020-11) Xiong, Bing-Qing; Zhou, Xinwei; Xu, Gui-Liang; Liu, Xiang; Hu, Youcheng; Liu, Yuzi; Zhu, Likun; Shi, Chen-Guang; Hong, Yu-Hao; Wan, Si-Cheng; Sun, Cheng-Jun; Chen, Shengli; Huang, Ling; Sun, Shi-Gang; Amine, Khalil; Ke, Fu-Sheng; Mechanical and Energy Engineering, School of Engineering and TechnologyAlloy-based materials are promising anodes for rechargeable batteries because of their higher theoretical capacities in comparison to graphite. Unfortunately, the huge volume changes during cycling cause serious structural degradation and undesired parasitic reactions with electrolytes, resulting in fragile solid-electrolyte interphase formation and serious capacity decay. This work proposes to mitigate the volume changes and suppress the interfacial reactivity of Ge anodes without sacrificing the interfacial Li+ transport, through in situ construction of an ultrarobust and lithiophilic Li-enriched Li–N nanoshield, which demonstrated improved chemical, electrochemical, mechanical, and environmental stability. Therefore, it can serve as a versatile interlayer to facilitate Li+ transport and effectively block the attack of electrolyte solvents, thus boosting the long-term cycle stability and fast charging capability of Ge anodes. This work offers an alternative methodology to tune the interfaces of other electrode materials as well by screening for more N-containing compounds that can react with Li+ during battery operation.Item New Understandings of Ethanol Oxidation Reaction Mechanism on Pd/C and Pd2Ru/C Catalysts in Alkaline Direct Ethanol Fuel Cells(Elsevier, 2018-05) Guo, Junsong; Chen, Rongrong; Zhu, Fu-Chun; Sun, Shi-Gang; Vilullas, Hebe M.; Engineering Technology, School of Engineering and TechnologyEthanol oxidation reaction (EOR) on Pd2Ru/C and Pd/C catalysts in alkaline media is studied comprehensively by cyclic voltammetry, chronoamperometry, in situ FTIR, single fuel cell test and electrochemical impedance spectroscopy measurements. The results show that, as compared to Pd/C, Pd2Ru/C favors acetaldehyde formation and hinders its oxidation. Based on X-ray absorption data, which evidence that Ru promotes a larger electronic vacancy of the Pd 4d band, it is expected that the formation of adsorbed ethoxy is favored on Pd2Ru/C and followed by its oxidation to acetaldehyde facilitated by oxygenated species provided by Ru. In contrast, acetaldehyde oxidation is more difficult on Pd2Ru/C than on Pd/C likely because the adsorption energy of the reactive species is increased. We also show that the performance of Pd2Ru/C anode in alkaline direct ethanol fuel cell (ADEFC) is initially better but degrades much more rapidly than that with Pd/C anode under the same test conditions. The degradation is demonstrated to result from the accumulation of large amounts of acetaldehyde, which in alkaline media forms dimers by the aldol condensation reaction. The dimers tend to be responsible for blocking the active sites for further ethanol oxidation. This comprehensive study provides new understandings of the roles of Ru in Pd2Ru/C for EOR in alkaline media, unveils the causes of the performance degradation of fuel cells with Pd2Ru/C and demonstrates that initial good performances are not necessarily a valid criterion for selecting appropriate anode catalysts for ADEFC applications.