- Browse by Author
Browsing by Author "Sun, Junqing"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Ataxia telangiectasia mutated in cardiac fibroblasts regulates doxorubicin-induced cardiotoxicity(Oxford University Press, 2016-05-01) Zhan, Hong; Aizawa, Kenichi; Sun, Junqing; Tomida, Shota; Otsu, Kinya; Conway, Simon J.; Mckinnon, Peter J.; Manabe, Ichiro; Komuro, Issei; Miyagawa, Kiyoshi; Nagai, Ryozo; Suzuki, Toru; Department of Pediatrics, School of MedicineAIMS: Doxorubicin (Dox) is a potent anticancer agent that is widely used in the treatment of a variety of cancers, but its usage is limited by cumulative dose-dependent cardiotoxicity mainly due to oxidative damage. Ataxia telangiectasia mutated (ATM) kinase is thought to play a role in mediating the actions of oxidative stress. Here, we show that ATM in cardiac fibroblasts is essential for Dox-induced cardiotoxicity. METHODS AND RESULTS: ATM knockout mice showed attenuated Dox-induced cardiotoxic effects (e.g. cardiac dysfunction, apoptosis, and mortality). As ATM was expressed and activated predominantly in cardiac fibroblasts, fibroblast-specific Atm-deleted mice (Atm(fl/fl);Postn-Cre) were generated to address cell type-specific effects, which showed that the fibroblast is the key lineage mediating Dox-induced cardiotoxicity through ATM. Mechanistically, ATM activated the Fas ligand, which subsequently regulated apoptosis in cardiomyocytes at later stages. Therapeutically, a potent and selective inhibitor of ATM, KU55933, when administered systemically was able to prevent Dox-induced cardiotoxicity. CONCLUSION: ATM-regulated effects within cardiac fibroblasts are pivotal in Dox-induced cardiotoxicity, and antagonism of ATM and its functions may have potential therapeutic implications.Item Modulation of cardiac fibrosis by Krüppel-like factor 6 through transcriptional control of thrombospondin 4 in cardiomyocytes(Oxford University Press, 2015-09-01) Sawaki, Daigo; Hou, Lianguo; Tomida, Shota; Sun, Junqing; Zhan, Hong; Aizawa, Kenichi; Son, Bo-Kyung; Kariya, Taro; Takimoto, Eiki; Otsu, Kinya; Conway, Simon J.; Manabe, Ichiro; Komuro, Issei; Friedman, Scott L.; Nagai, Ryozo; Suzuki, Toru; Department of Pediatrics, IU School of MedicineAIMS: Krüppel-like factors (KLFs) are a family of transcription factors which play important roles in the heart under pathological and developmental conditions. We previously identified and cloned Klf6 whose homozygous mutation in mice results in embryonic lethality suggesting a role in cardiovascular development. Effects of KLF6 on pathological regulation of the heart were investigated in the present study. METHODS AND RESULTS: Mice heterozygous for Klf6 resulted in significantly diminished levels of cardiac fibrosis in response to angiotensin II infusion. Intriguingly, a similar phenotype was seen in cardiomyocyte-specific Klf6 knockout mice, but not in cardiac fibroblast-specific knockout mice. Microarray analysis revealed increased levels of the extracellular matrix factor, thrombospondin 4 (TSP4), in the Klf6-ablated heart. Mechanistically, KLF6 directly suppressed Tsp4 expression levels, and cardiac TSP4 regulated the activation of cardiac fibroblasts to regulate cardiac fibrosis. CONCLUSION: Our present studies on the cardiac function of KLF6 show a new mechanism whereby cardiomyocytes regulate cardiac fibrosis through transcriptional control of the extracellular matrix factor, TSP4, which, in turn, modulates activation of cardiac fibroblasts.