- Browse by Author
Browsing by Author "Sulman, Erik P."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item MST4 Phosphorylation of ATG4B Regulates Autophagic Activity, Tumorigenicity, and Radioresistance in Glioblastoma(Elsevier, 2017-12-11) Huang, Tianzhi; Kim, Chung Kwon; Alvarez, Angel A.; Pangeni, Rajendra P.; Wan, Xuechao; Song, Xiao; Shi, Taiping; Yang, Yongyong; Sastry, Namratha; Horbinski, Craig M.; Lu, Songjian; Stupp, Roger; Kessler, John A.; Nishikawa, Ryo; Nakano, Ichiro; Sulman, Erik P.; Lu, Xinghua; James, Charles David; Yin, Xiao-Ming; Hu, Bo; Cheng, Shi-Yuan; Pathology and Laboratory Medicine, School of MedicineATG4B stimulates autophagy by promoting autophagosome formation through reversible modification of ATG8. We identify ATG4B as a substrate of mammalian sterile20-like kinase (STK) 26/MST4. MST4 phosphorylates ATG4B at serine residue 383, which stimulates ATG4B activity and increases autophagic flux. Inhibition of MST4 or ATG4B activities using genetic approaches or an inhibitor of ATG4B suppresses autophagy and the tumorigenicity of glioblastoma (GBM) cells. Furthermore, radiation induces MST4 expression, ATG4B phosphorylation, and autophagy. Inhibiting ATG4B in combination with radiotherapy in treating mice with intracranial GBM xenograft markedly slows tumor growth and provides a significant survival benefit. Our work describes an MST4-ATG4B signaling axis that influences GBM autophagy and malignancy, and whose therapeutic targeting enhances the anti-tumor effects of radiotherapy., • MST4 kinase regulates the growth, sphere formation, and tumorigenicity of GBM cells • MST4 stimulates autophagy by activating ATG4B through phosphorylation of ATG4B S383 • Radiation increases MST4 expression and ATG4B phosphorylation, inducing autophagy • Inhibiting ATG4B enhances the anti-tumor effects of radiotherapy in GBM PDX models , Huang et al. show that radiation induces MST4 expression and that MST4 phosphorylates ATG4B at serine 383, which increases ATG4B activity and autophagic flux. Inhibition of ATG4B reduces autophagy and tumorigenicity of glioblastoma (GBM) cells and improves the impact of radiotherapy on GBM growth in mice.Item Proton therapy reduces the likelihood of high-grade radiation-induced lymphopenia in glioblastoma patients: phase II randomized study of protons vs photons(Oxford University Press, 2021-02-25) Mohan, Radhe; Liu, Amy Y.; Brown, Paul D.; Mahajan, Anita; Dinh, Jeffrey; Chung, Caroline; McAvoy, Sarah; McAleer, Mary Frances; Lin, Steven H.; Li, Jing; Ghia, Amol J.; Zhu, Cong; Sulman, Erik P.; de Groot, John F.; Heimberger, Amy B.; McGovern, Susan L.; Grassberger, Clemens; Shih, Helen; Ellsworth, Susannah; Grosshans, David R.; Radiation Oncology, School of MedicineBackground: We investigated differences in radiation-induced grade 3+ lymphopenia (G3+L), defined as an absolute lymphocyte count (ALC) nadir of <500 cells/µL, after proton therapy (PT) or X-ray (photon) therapy (XRT) for patients with glioblastoma (GBM). Methods: Patients enrolled in a randomized phase II trial received PT (n = 28) or XRT (n = 56) concomitantly with temozolomide. ALC was measured before, weekly during, and within 1 month after radiotherapy. Whole-brain mean dose (WBMD) and brain dose-volume indices were extracted from planned dose distributions. Univariate and multivariate logistic regression analyses were used to identify independent predictive variables. The resulting model was evaluated using receiver operating characteristic (ROC) curve analysis. Results: Rates of G3+L were lower in men (7/47 [15%]) versus women (19/37 [51%]) (P < 0.001), and for PT (4/28 [14%]) versus XRT (22/56 [39%]) (P = 0.024). G3+L was significantly associated with baseline ALC, WBMD, and brain volumes receiving 5‒40 Gy(relative biological effectiveness [RBE]) or higher (ie, V5 through V40). Stepwise multivariate logistic regression analysis identified being female (odds ratio [OR] 6.2, 95% confidence interval [CI]: 1.95‒22.4, P = 0.003), baseline ALC (OR 0.18, 95% CI: 0.05‒0.51, P = 0.003), and whole-brain V20 (OR 1.07, 95% CI: 1.03‒1.13, P = 0.002) as the strongest predictors. ROC analysis yielded an area under the curve of 0.86 (95% CI: 0.79-0.94) for the final G3+L prediction model. Conclusions: Sex, baseline ALC, and whole-brain V20 were the strongest predictors of G3+L for patients with GBM treated with radiation and temozolomide. PT reduced brain volumes receiving low and intermediate doses and, consequently, reduced G3+L.Item The State of Neuro-Oncology During the COVID-19 Pandemic: A Worldwide Assessment(Oxford, 2020) Mrugala, Maciej M.; Ostrom, Quinn T.; Pressley, Shelley M.; Taylor, Jennie; Thomas, Alissa A.; Wefel, Jeffrey S.; Coven, Scott L.; Acquaye, Alvina A.; Haynes, Chas; Agnihotri, Sameer; Lim, Michael; Peters, Katherine B.; Sulman, Erik P.; Salcido, Joanne T.; Butowski, Nicholas A.; Hervey-Jumper, Shawn; Mansouri, Alireza; Oliver, Kathy R.; Porter, Alyx B.; Nassiri, F.; Schiff, D.; Dunbar, Erin M.; Hegi, Monika E.; Armstrong, Terri S.; van den Bent, Martin J.; Chang, Susan M.; Zadeh, Gelareh; Chheda, Milan G.; Pediatrics, School of MedicineTo assess the impact of the pandemic on the field, we performed an international web-based survey of practitioners, scientists, and trainees from 21 neuro-oncology organizations across 6 continents from April 24 through May 17. Of 582 respondents, 258 (45%) were in the US, and 314 (55%) were international. 80.4% were affiliated with academic institutions. 94% respondents reported changes in clinical practice; 95% reported conversion to telemedicine for at least some appointments. However, almost 10% practitioners felt the need to see patients in person specifically because of billing concerns and perceived institutional pressure. Over 50% believed neuro-oncology patients were at increased risk of contracting COVID-19. 67% practitioners suspended enrollment for at least one clinical trial: 53% suspended phase II and 62% suspended phase III trial enrollment. 71% clinicians feared for their or their families’ safety, specifically because of their clinical duties. 20% percent said they did not have enough PPE to work safely; about the same percentage were unhappy with their institutions’ response to the pandemic. 43% believed the pandemic would negatively affect their academic career, and 52% fellowship program directors were worried about losing funding for their training programs. While 69% respondents reported increased stress, 44% were offered no psychosocial support. 37% had their salary reduced. 36% researchers had to temporarily close their laboratories. In contrast, the pandemic created positive changes in perceived patient and family satisfaction, quality of communication, and use of technology to deliver care and interactions with other practitioners. CONCLUSIONS: The pandemic has altered standard treatment schedules and limited investigational treatment options for patients. In some cases, clinicians felt institutional pressure to continue conducting billable in-person visits when telemedicine visits would have sufficed. A lack of institutional support created anxiety among clinicians and researchers. We make specific recommendations to guide clinical and scientific infrastructure moving forward.