- Browse by Author
Browsing by Author "Sullivan, Brian P."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Angiogenic potential of skeletal muscle derived extracellular vesicles differs between oxidative and glycolytic muscle tissue in mice(Nature, 2023-11) Kargl, Christopher K.; Jia, Zhihao; Shera, Deborah A.; Sullivan, Brian P.; Burton, Lundon C.; Kim, Kun Ho; Nie, Yaohui; Hubal, Monica J.; Shannahan, Jonathan H.; Kuang, Shihuan; Gavin, Timothy P.; Exercise & Kinesiology, School of Health and Human SciencesSkeletal muscle fibers regulate surrounding endothelial cells (EC) via secretion of numerous angiogenic factors, including extracellular vesicles (SkM-EV). Muscle fibers are broadly classified as oxidative (OXI) or glycolytic (GLY) depending on their metabolic characteristics. OXI fibers secrete more pro-angiogenic factors and have greater capillary densities than GLY fibers. OXI muscle secretes more EV than GLY, however it is unknown whether muscle metabolic characteristics regulate EV contents and signaling potential. EVs were isolated from primarily oxidative or glycolytic muscle tissue from mice. MicroRNA (miR) contents were determined and endothelial cells were treated with OXI- and GLY-EV to investigate angiogenic signaling potential. There were considerable differences in miR contents between OXI- and GLY-EV and pathway analysis identified that OXI-EV miR were predicted to positively regulate multiple endothelial-specific pathways, compared to GLY-EV. OXI-EV improved in vitro angiogenesis, which may have been mediated through nitric oxide synthase (NOS) related pathways, as treatment of endothelial cells with a non-selective NOS inhibitor abolished the angiogenic benefits of OXI-EV. This is the first report to show widespread differences in miR contents between SkM-EV isolated from metabolically different muscle tissue and the first to demonstrate that oxidative muscle tissue secretes EV with greater angiogenic signaling potential than glycolytic muscle tissue.Item Obesity and exercise training alter inflammatory pathway skeletal muscle small extracellular vesicle microRNAs(Wiley, 2022) Sullivan, Brian P.; Nie, Yaohui; Evans, Sheelagh; Kargl, Chris K.; Hettinger, Zach R.; Garner, Ron T.; Hubal, Monica J.; Kuang, Shihuan; Stout, Julianne; Gavin, Timothy P.; Kinesiology, School of Health and Human SciencesObesity is associated with chronic inflammation characterized by increased levels of inflammatory cytokines, whereas exercise training reduces inflammation. Small extracellular vesicles (EVs; 30–150 nm) participate in cell‐to‐cell communication in part through microRNA (miRNA) post‐transcriptional regulation of mRNA. We examined whether obesity and concurrent aerobic and resistance exercise training alter skeletal muscle EV miRNA content and inflammatory signalling. Vastus lateralis biopsies were obtained from sedentary individuals with (OB) and without obesity (LN). Before and after 7 days of concurrent aerobic and resistance training, muscle‐derived small EV miRNAs and whole‐muscle mRNAs were measured. Pathway analysis revealed that obesity alters small EV miRNAs that target inflammatory (SERPINF1, death receptor and Gαi) and growth pathways (Wnt/β‐catenin, PTEN, PI3K/AKT and IGF‐1). In addition, exercise training alters small EV miRNAs in an anti‐inflammatory manner, targeting the IL‐10, IL‐8, Toll‐like receptor and nuclear factor‐κB signalling pathways. In whole muscle, IL‐8 mRNA was reduced by 50% and Jun mRNA by 25% after exercise training, consistent with the anti‐inflammatory effects of exercise on skeletal muscle. Obesity and 7 days of concurrent exercise training differentially alter skeletal muscle‐derived small EV miRNA contents targeting inflammatory and anabolic pathways.Item Peroxisome proliferator-activated receptor γ coactivator 1-α overexpression improves angiogenic signalling potential of skeletal muscle-derived extracellular vesicles(Wiley, 2023) Kargl, Chris K.; Sullivan, Brian P.; Middleton, Derek; York, Andrew; Burton, Lundon C.; Brault, Jeffrey J.; Kuang, Shihuan; Gavin, Timothy P.; Anatomy, Cell Biology and Physiology, School of MedicineNew findings: What is the central question of this study? Skeletal muscle extracellular vesicles likely act as pro-angiogenic signalling factors: does overexpression of peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) alter skeletal muscle myotube extracellular vesicle release, contents and angiogenic potential? What is the main finding and its importance? Overexpression of PGC-1α results in secretion of extracellular vesicles that elevate measures of angiogenesis and protect against acute oxidative stress in vitro. Skeletal muscle with high levels of PGC-1α expression, commonly associated with exercise induced angiogenesis and high basal capillarization, may secrete extracellular vesicles that support capillary growth and maintenance. Abstract: Skeletal muscle capillarization is proportional to muscle fibre mitochondrial content and oxidative capacity. Skeletal muscle cells secrete many factors that regulate neighbouring capillary endothelial cells (ECs), including extracellular vesicles (SkM-EVs). Peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) regulates mitochondrial biogenesis and the oxidative phenotype in skeletal muscle. Skeletal muscle PGC-1α also regulates secretion of multiple angiogenic factors, but it is unknown whether PGC-1α regulates SkM-EV release, contents and angiogenic signalling potential. PGC-1α was overexpressed via adenovirus in primary human myotubes. EVs were collected from PGC-1α-overexpressing myotubes (PGC-EVs) as well as from green fluorescent protein-overexpressing myotubes (GFP-EVs), and from untreated myotubes. EV release and select mRNA contents were measured from EVs. Additionally, ECs were treated with EVs to measure angiogenic potential of EVs in normal conditions and following an oxidative stress challenge. PGC-1α overexpression did not impact EV release but did elevate EV content of mRNAs for several antioxidant proteins (nuclear factor erythroid 2-related factor 2, superoxide dismutase 2, glutathione peroxidase). PGC-EV treatment of cultured human umbilical vein endothelial cells (HUVECs) increased their proliferation (+36.6%), tube formation (length: +28.1%; number: +25.7%) and cellular viability (+52.9%), and reduced reactive oxygen species levels (-41%) compared to GFP-EVs. Additionally, PGC-EV treatment protected against tube formation impairments and induction of cellular senescence following acute oxidative stress. Overexpression of PGC-1α in human myotubes increases the angiogenic potential of SkM-EVs. These angiogenic benefits coincided with increased anti-oxidative capacity of recipient HUVECs. High PGC-1α expression in skeletal muscle may prompt the release of SkM-EVs that support vascular redox homeostasis and angiogenesis.