- Browse by Author
Browsing by Author "Strain, Jeremy F."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Presenilin-1 mutation position influences amyloidosis, small vessel disease, and dementia with disease stage(Wiley, 2024) Joseph-Mathurin, Nelly; Feldman, Rebecca L.; Lu, Ruijin; Shirzadi, Zahra; Toomer, Carmen; Saint Clair, Junie R.; Ma, Yinjiao; McKay, Nicole S.; Strain, Jeremy F.; Kilgore, Collin; Friedrichsen, Karl A.; Chen, Charles D.; Gordon, Brian A.; Chen, Gengsheng; Hornbeck, Russ C.; Massoumzadeh, Parinaz; McCullough, Austin A.; Wang, Qing; Li, Yan; Wang, Guoqiao; Keefe, Sarah J.; Schultz, Stephanie A.; Cruchaga, Carlos; Preboske, Gregory M.; Jack, Clifford R., Jr.; Llibre-Guerra, Jorge J.; Allegri, Ricardo F.; Ances, Beau M.; Berman, Sarah B.; Brooks, William S.; Cash, David M.; Day, Gregory S.; Fox, Nick C.; Fulham, Michael; Ghetti, Bernardino; Johnson, Keith A.; Jucker, Mathias; Klunk, William E.; la Fougère, Christian; Levin, Johannes; Niimi, Yoshiki; Oh, Hwamee; Perrin, Richard J.; Reischl, Gerald; Ringman, John M.; Saykin, Andrew J.; Schofield, Peter R.; Su, Yi; Supnet-Bell, Charlene; Vöglein, Jonathan; Yakushev, Igor; Brickman, Adam M.; Morris, John C.; McDade, Eric; Xiong, Chengjie; Bateman, Randall J.; Chhatwal, Jasmeer P.; Benzinger, Tammie L. S.; Dominantly Inherited Alzheimer Network; Pathology and Laboratory Medicine, School of MedicineIntroduction: Amyloidosis, including cerebral amyloid angiopathy, and markers of small vessel disease (SVD) vary across dominantly inherited Alzheimer's disease (DIAD) presenilin-1 (PSEN1) mutation carriers. We investigated how mutation position relative to codon 200 (pre-/postcodon 200) influences these pathologic features and dementia at different stages. Methods: Individuals from families with known PSEN1 mutations (n = 393) underwent neuroimaging and clinical assessments. We cross-sectionally evaluated regional Pittsburgh compound B-positron emission tomography uptake, magnetic resonance imaging markers of SVD (diffusion tensor imaging-based white matter injury, white matter hyperintensity volumes, and microhemorrhages), and cognition. Results: Postcodon 200 carriers had lower amyloid burden in all regions but worse markers of SVD and worse Clinical Dementia Rating® scores compared to precodon 200 carriers as a function of estimated years to symptom onset. Markers of SVD partially mediated the mutation position effects on clinical measures. Discussion: We demonstrated the genotypic variability behind spatiotemporal amyloidosis, SVD, and clinical presentation in DIAD, which may inform patient prognosis and clinical trials. Highlights: Mutation position influences Aβ burden, SVD, and dementia. PSEN1 pre-200 group had stronger associations between Aβ burden and disease stage. PSEN1 post-200 group had stronger associations between SVD markers and disease stage. PSEN1 post-200 group had worse dementia score than pre-200 in late disease stage. Diffusion tensor imaging-based SVD markers mediated mutation position effects on dementia in the late stage.Item Resting-State Functional Connectivity Disruption as a Pathological Biomarker in Autosomal Dominant Alzheimer Disease(Mary Ann Liebert, 2021) Smith, Robert X.; Strain, Jeremy F.; Tanenbaum, Aaron; Fagan, Anne M.; Hassenstab, Jason; McDade, Eric; Schindler, Suzanne E.; Gordon, Brian A.; Xiong, Chengjie; Chhatwal, Jasmeer; Jack, Clifford, Jr.; Karch, Celeste; Berman, Sarah; Brosch, Jared R.; Lah, James J.; Brickman, Adam M.; Cash, David M.; Fox, Nick C.; Graff-Radford, Neill R.; Levin, Johannes; Noble, James; Holtzman, David M.; Masters, Colin L.; Farlow, Martin R.; Laske, Christoph; Schofield, Peter R.; Marcus, Daniel S.; Morris, John C.; Benzinger, Tammie L. S.; Bateman, Randall J.; Ances, Beau M.; Neurology, School of MedicineAim: Identify a global resting-state functional connectivity (gFC) signature in mutation carriers (MC) from the Dominantly Inherited Alzheimer Network (DIAN). Assess the gFC with regard to amyloid (A), tau (T), and neurodegeneration (N) biomarkers, and estimated years to symptom onset (EYO). Introduction: Cross-sectional measures were assessed in MC (n = 171) and mutation noncarrier (NC) (n = 70) participants. A functional connectivity (FC) matrix that encompassed multiple resting-state networks was computed for each participant. Methods: A global FC was compiled as a single index indicating FC strength. The gFC signature was modeled as a nonlinear function of EYO. The gFC was linearly associated with other biomarkers used for assessing the AT(N) framework, including cerebrospinal fluid (CSF), positron emission tomography (PET) molecular biomarkers, and structural magnetic resonance imaging. Results: The gFC was reduced in MC compared with NC participants. When MC participants were differentiated by clinical dementia rating (CDR), the gFC was significantly decreased in MC CDR >0 (demented) compared with either MC CDR 0 (cognitively normal) or NC participants. The gFC varied nonlinearly with EYO and initially decreased at EYO = −24 years, followed by a stable period followed by a further decline near EYO = 0 years. Irrespective of EYO, a lower gFC associated with values of amyloid PET, CSF Aβ1–42, CSF p-tau, CSF t-tau, 18F-fluorodeoxyglucose, and hippocampal volume. Conclusions: The gFC correlated with biomarkers used for defining the AT(N) framework. A biphasic change in the gFC suggested early changes associated with CSF amyloid and later changes associated with hippocampal volume.Item Serum neurofilament light chain levels are associated with white matter integrity in autosomal dominant Alzheimer's disease(Elsevier, 2020-08-01) Schultz, Stephanie A.; Strain, Jeremy F.; Adedokun, Adedamola; Wang, Qing; Preische, Oliver; Kuhle, Jens; Flores, Shaney; Keefe, Sarah; Dincer, Aylin; Ances, Beau M.; Berman, Sarah B.; Brickman, Adam M.; Cash, David M.; Chhatwal, Jasmeer; Cruchaga, Carlos; Ewers, Michael; Fox, Nick N.; Ghetti, Bernardino; Goate, Alison; Graff-Radford, Neill R.; Hassenstab, Jason J.; Hornbeck, Russ; Jack, Clifford; Johnson, Keith; Joseph-Mathurin, Nelly; Karch, Celeste M.; Koeppe, Robert A.; Lee, Athene K. W.; Levin, Johannes; Masters, Colin; McDade, Eric; Perrin, Richard J.; Rowe, Christopher C.; Salloway, Stephen; Saykin, Andrew J.; Sperling, Reisa; Su, Yi; Villemagne, Victor L.; Vöglein, Jonathan; Weiner, Michael; Xiong, Chengjie; Fagan, Anne M.; Morris, John C.; Bateman, Randall J.; Benzinger, Tammie L. S.; Jucker, Mathias; Gordon, Brian A.; Pathology and Laboratory Medicine, School of MedicineNeurofilament light chain (NfL) is a protein that is selectively expressed in neurons. Increased levels of NfL measured in either cerebrospinal fluid or blood is thought to be a biomarker of neuronal damage in neurodegenerative diseases. However, there have been limited investigations relating NfL to the concurrent measures of white matter (WM) decline that it should reflect. White matter damage is a common feature of Alzheimer's disease. We hypothesized that serum levels of NfL would associate with WM lesion volume and diffusion tensor imaging (DTI) metrics cross-sectionally in 117 autosomal dominant mutation carriers (MC) compared to 84 non-carrier (NC) familial controls as well as in a subset (N = 41) of MC with longitudinal NfL and MRI data. In MC, elevated cross-sectional NfL was positively associated with WM hyperintensity lesion volume, mean diffusivity, radial diffusivity, and axial diffusivity and negatively with fractional anisotropy. Greater change in NfL levels in MC was associated with larger changes in fractional anisotropy, mean diffusivity, and radial diffusivity, all indicative of reduced WM integrity. There were no relationships with NfL in NC. Our results demonstrate that blood-based NfL levels reflect WM integrity and supports the view that blood levels of NfL are predictive of WM damage in the brain. This is a critical result in improving the interpretability of NfL as a marker of brain integrity, and for validating this emerging biomarker for future use in clinical and research settings across multiple neurodegenerative diseases.