ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Stoll, Stefan"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A Radical Transfer Pathway in Spore Photoproduct Lyase
    (ACS, 2013) Yang, Linlin; Nelson, Renae S.; Benjdia, Alhosna; Lin, Gengjie; Telser, Joshua; Stoll, Stefan; Schlichting, Ilme; Li, Lei; Chemistry and Chemical Biology, School of Science
    Spore photoproduct lyase (SPL) repairs a covalent UV-induced thymine dimer, spore photoproduct (SP), in germinating endospores and is responsible for the strong UV resistance of endospores. SPL is a radical S-adenosyl-l-methionine (SAM) enzyme, which uses a [4Fe-4S](+) cluster to reduce SAM, generating a catalytic 5'-deoxyadenosyl radical (5'-dA(•)). This in turn abstracts a H atom from SP, generating an SP radical that undergoes β scission to form a repaired 5'-thymine and a 3'-thymine allylic radical. Recent biochemical and structural data suggest that a conserved cysteine donates a H atom to the thymine radical, resulting in a putative thiyl radical. Here we present structural and biochemical data that suggest that two conserved tyrosines are also critical in enzyme catalysis. One [Y99(Bs) in Bacillus subtilis SPL] is downstream of the cysteine, suggesting that SPL uses a novel hydrogen atom transfer (HAT) pathway with a pair of cysteine and tyrosine residues to regenerate SAM. The other tyrosine [Y97(Bs)] has a structural role to facilitate SAM binding; it may also contribute to the SAM regeneration process by interacting with the putative (•)Y99(Bs) and/or 5'-dA(•) intermediates to lower the energy barrier for the second H abstraction step. Our results indicate that SPL is the first member of the radical SAM superfamily (comprising more than 44000 members) to bear a catalytically operating HAT chain.
  • Loading...
    Thumbnail Image
    Item
    EPR Study of UV-irradiated Thymidine Microcrystals Supports Radical Intermediates in Spore Photoproduct Formation
    (ACS, 2016-09) Hayes, Ellen C.; Jian, Yajun; Stoll, Stefan; Li, Lei; Department of Physics, School of Science
    Spore photoproduct is a thymidine dimer formed when bacterial endospore DNA is exposed to ultraviolet (UV) radiation. The mechanism of formation of this thymidine dimer has been proposed to proceed through a radical-pair intermediate. The intermediate forms when a methyl-group hydrogen atom of one thymidine nucleobase is transferred to the C6 position of an adjacent thymidine nucleobase, forming two species, the TCH2 and TH radicals, respectively. Using a series of thymidine isotopologues and electron paramagnetic resonance (EPR) spectroscopy, we show that microcrystals of thymidine exposed to UV radiation produce these two radical species. We observe three sources that donate the additional hydrogen at the C6 position of the TH radical. One of the three sources is the methyl group of another thymidine molecule in a significant fraction of the TH species. This lends support to the radical-pair intermediate proposed in the formation of spore photoproduct.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University