- Browse by Author
Browsing by Author "Stewart, Robert J."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Epigallocatechin-3-gallate (EGCG) consumption in the Ts65Dn model of Down syndrome fails to improve behavioral deficits and is detrimental to skeletal phenotypes(Elsevier, 2017-08) Stringer, Megan; Abeysekera, Irushi; Thomas, Jared; LaCombe, Jonathan; Stancombe, Kailey; Stewart, Robert J.; Dria, Karl J.; Wallace, Joseph M.; Goodlett, Charles R.; Roper, Randall J.; Department of Biology, School of ScienceDown syndrome (DS) is caused by three copies of human chromosome 21 (Hsa21) and results in phenotypes including intellectual disability and skeletal deficits. Ts65Dn mice have three copies of ~ 50% of the genes homologous to Hsa21 and display phenotypes associated with DS, including cognitive deficits and skeletal abnormalities. DYRK1A is found in three copies in humans with Trisomy 21 and in Ts65Dn mice, and is involved in a number of critical pathways including neurological development and osteoclastogenesis. Epigallocatechin-3-gallate (EGCG), the main polyphenol in green tea, inhibits Dyrk1a activity. We have previously shown that EGCG treatment (~ 10 mg/kg/day) improves skeletal abnormalities in Ts65Dn mice, yet the same dose, as well as ~ 20 mg/kg/day did not rescue deficits in the Morris water maze spatial learning task (MWM), novel object recognition (NOR) or balance beam task (BB). In contrast, a recent study reported that an EGCG-containing supplement with a dose of 2–3 mg per day (~ 40–60 mg/kg/day) improved hippocampal-dependent task deficits in Ts65Dn mice. The current study investigated if an EGCG dosage similar to that study would yield similar improvements in either cognitive or skeletal deficits. Ts65Dn mice and euploid littermates were given EGCG [0.4 mg/mL] or a water control, with treatments yielding average daily intakes of ~ 50 mg/kg/day EGCG, and tested on the multivariate concentric square field (MCSF)—which assesses activity, exploratory behavior, risk assessment, risk taking, and shelter seeking—and NOR, BB, and MWM. EGCG treatment failed to improve cognitive deficits; EGCG also produced several detrimental effects on skeleton in both genotypes. In a refined HPLC-based assay, its first application in Ts65Dn mice, EGCG treatment significantly reduced kinase activity in femora but not in the cerebral cortex, cerebellum, or hippocampus. Counter to expectation, 9-week-old Ts65Dn mice exhibited a decrease in Dyrk1a protein levels in Western blot analysis in the cerebellum. The lack of beneficial therapeutic behavioral effects and potentially detrimental skeletal effects of EGCG found in Ts65Dn mice emphasize the importance of identifying dosages of EGCG that reliably improve DS phenotypes and linking those effects to actions of EGCG (or EGCG-containing supplements) in specific targets in brain and bone.Item Epigallocatechin-3-gallate (EGCG) consumption in the Ts65Dn model of Down syndrome fails to improve behavioral deficits and is detrimental to skeletal phenotypes(Elsevier, 2017-08-01) Stringer, Megan; Abeysekera, Irushi; Thomas, Jared; LaCombe, Jonathan; Stancombe, Kailey; Stewart, Robert J.; Dria, Karl J.; Wallace, Joseph M.; Goodlett, Charles R.; Roper, Randall J.; Psychology, School of ScienceDown syndrome (DS) is caused by three copies of human chromosome 21 (Hsa21) and results in phenotypes including intellectual disability and skeletal deficits. Ts65Dn mice have three copies of ~50% of the genes homologous to Hsa21 and display phenotypes associated with DS, including cognitive deficits and skeletal abnormalities. DYRK1A is found in three copies in humans with Trisomy 21 and in Ts65Dn mice, and is involved in a number of critical pathways including neurological development and osteoclastogenesis. Epigallocatechin-3-gallate (EGCG), the main polyphenol in green tea, inhibits Dyrk1a activity. We have previously shown that EGCG treatment (~10mg/kg/day) improves skeletal abnormalities in Ts65Dn mice, yet the same dose, as well as ~20mg/kg/day did not rescue deficits in the Morris water maze spatial learning task (MWM), novel object recognition (NOR) or balance beam task (BB). In contrast, a recent study reported that an EGCG-containing supplement with a dose of 2-3mg per day (~40-60mg/kg/day) improved hippocampal-dependent task deficits in Ts65Dn mice. The current study investigated if an EGCG dosage similar to that study would yield similar improvements in either cognitive or skeletal deficits. Ts65Dn mice and euploid littermates were given EGCG [0.4mg/mL] or a water control, with treatments yielding average daily intakes of ~50mg/kg/day EGCG, and tested on the multivariate concentric square field (MCSF)-which assesses activity, exploratory behavior, risk assessment, risk taking, and shelter seeking-and NOR, BB, and MWM. EGCG treatment failed to improve cognitive deficits; EGCG also produced several detrimental effects on skeleton in both genotypes. In a refined HPLC-based assay, its first application in Ts65Dn mice, EGCG treatment significantly reduced kinase activity in femora but not in the cerebral cortex, cerebellum, or hippocampus. Counter to expectation, 9-week-old Ts65Dn mice exhibited a decrease in Dyrk1a protein levels in Western blot analysis in the cerebellum. The lack of beneficial therapeutic behavioral effects and potentially detrimental skeletal effects of EGCG found in Ts65Dn mice emphasize the importance of identifying dosages of EGCG that reliably improve DS phenotypes and linking those effects to actions of EGCG (or EGCG-containing supplements) in specific targets in brain and bone.Item Multivariate Concentric Square Field unveils behavioral exploratory categories of locomotor activity in mouse model of Down syndrome(Office of the Vice Chancellor for Research, 2015-04-17) Stancombe, Kailey E.; Goodlett, Charles R.; Stewart, Robert J.; Stringer, Megan; Roper, Randall J.Down Syndrome (DS), trisomy 21(Ts21), is a genetic condition in which a third copy of chromosome 21 is present, and results in neurodevelopmental deficits including intellectual disability. DS has been modeled in mice; Ts65Dn mouse model displays many of the phenotypes associated with DS, including cognitive deficits. We previously studied behavioral phenotypes of Ts65Dn mice and observed significantly increased locomotor activity in a novel arena (an “open field”). In those studies, treatment of the Ts65Dn mice with ~10 mg/kg/day of epigallocatechin-3-gallate (EGCG), a selective inhibitor of the DYRK1A kinase (one of the genes implicated in the neurodevelopmental deficits in DS and in Ts65Dn mice), failed to attenuate hyperactivity. Locomotor activity in an open field is a basic measure of general exploration in a simple environment, and was only moderately sensitive to the hyperactivity of the Ts65Dn mice. The aim of the current study was to use a more advanced analysis of behavioral patterns of exploration in a more complex, multi-partitioned arena, termed the Multivariate Concentric Square Field (MCSF). The advantage of MCSF is that it provides more elaborate measures of exploratory behavior by examining different categories of exploration: general activity, exploratory activity, risk assessment, risk taking and shelter seeking behavior. Trisomic mice and euploid littermates were treated with a continuous high dose (~100 mg/kg/day) of EGCG or water (controls) beginning at weaning. At seven weeks of age, they were tested in the MCSF on two consecutive days. Our current results indicate that Ts65Dn mice displayed more exploratory behavior compared to controls, and the EGCG treatment may have normalized exploratory behavior toward that of controls. Identifying altered patterns of exploratory behavior in the Ts65Dn mouse and the normalizing effects of EGCG treatment may help provide a therapeutic approach to DS.