- Browse by Author
Browsing by Author "Steinmetz, Rosemary"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Abnormalities in Osteoclastogenesis and Decreased Tumorigenesis in Mice Deficient for Ovarian Cancer G Protein-Coupled Receptor 1(PLOS, 2009-05-29) Li, Hui; Wang, Dongmei; Singh, Lisam Shanjukumar; Berk, Michael; Tan, Haiyan; Zhao, Zhenwen; Steinmetz, Rosemary; Kirmani, Kashif; Wei, Gang; Xu, Yan; Obstetrics and Gynecology, School of MedicineOvarian cancer G protein-coupled receptor 1 (OGR1) has been shown to be a proton sensing receptor in vitro. We have shown that OGR1 functions as a tumor metastasis suppressor gene when it is over-expressed in human prostate cancer cells in vivo. To examine the physiological functions of OGR1, we generated conditional OGR1 deficient mice by homologous recombination. OGR1 deficient mice were viable and upon gross-inspection appeared normal. Consistent with in vitro studies showing that OGR1 is involved in osteoclastogenesis, reduced osteoclasts were detected in OGR1 deficient mice. A pH-dependent osteoclasts survival effect was also observed. However, overall abnormality in the bones of these animals was not observed. In addition, melanoma cell tumorigenesis was significantly inhibited in OGR1 deficient mice. OGR1 deficient mice in the mixed background produced significantly less peritoneal macrophages when stimulated with thioglycolate. These macrophages also showed altered extracellular signal-regulated kinases (ERK) activation and nitric oxide (NO) production in response to lipopolysaccharide. OGR1-dependent pH responses assessed by cAMP production and cell survival in macrophages or brown fat cells were not observed, presumably due to the presence of other proton sensing receptors in these cells. Our results indicate that OGR1's role in osteoclastogenesis is not strong enough to affect overall bone development and its role in tumorigenesis warrants further investigation. The mice generated can be potentially used for several disease models, including cancers or osteoclast-related diseases.Item Altered Hematopoiesis, Behavior, and Sexual Function in μ Opioid Receptor–deficient Mice(Rockefeller University Press, 1997) Tian, Mingting; Broxmeyer, Hal E.; Fan, Yi; Lai, Zhennan; Zhang, Shengwen; Aronica, Susan; Cooper, Scott; Bigsby, Robert M.; Steinmetz, Rosemary; Engle, Sandra J.; Mestek, Anton; Pollock, Jonathan D.; Lehman, Michael N.; Jansen, Heiko T.; Ying, Moyin; Stambrook, Peter J.; Tischfield, Jay A.; Yu, Lei; Microbiology and Immunology, School of MedicineThe mu opioid receptor is thought to be the cellular target of opioid narcotics such as morphine and heroin, mediating their effects in both pain relief and euphoria. Its involvement is also implicated in a range of diverse biological processes. Using a mouse model in which the receptor gene was disrupted by targeted homologous recombination, we explored the involvement of this receptor in a number of physiological functions. Mice homozygous for the disrupted gene developed normally, but their motor function was altered. Drug-naive homozygotes displayed reduced locomotor activity, and morphine did not induce changes in locomotor activity observed in wild-type mice. Unexpectedly, lack of a functional receptor resulted in changes in both the host defense system and the reproductive system. We observed increased proliferation of granulocyte-macrophage, erythroid, and multipotential progenitor cells in both bone marrow and spleen, indicating a link between hematopoiesis and the opioid system, both of which are stress-responsive systems. Unexpected changes in sexual function in male homozygotes were also observed, as shown by reduced mating activity, a decrease in sperm count and motility, and smaller litter size. Taken together, these results suggest a novel role of the mu opioid receptor in hematopoiesis and reproductive physiology, in addition to its known involvement in pain relief.