ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Stearns, V."

Now showing 1 - 5 of 5
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Aromatase inhibitor-induced modulation of breast density: clinical and genetic effects
    (NPG - Nature Publishing Group, 2013-10-29) Henry, N. L.; Chan, H-P; Dantzer, J.; Goswami, C. P.; Li, L.; Skaar, Todd C.; Rae, J. M.; Desta, Z.; Khouri, N.; Pinsky, R.; Oesterreich, S.; Zhou, C.; Hadjiiski, L.; Philips, S.; Robarge, J.; Nguyen, A. T.; Storniolo, A. M.; Flockhart, D. A.; Hayes, D. F.; Helvie, M. A.; Stearns, V.; Department of Medicine, School of Medicine
    Background: Change in breast density may predict outcome of women receiving adjuvant hormone therapy for breast cancer. We performed a prospective clinical trial to evaluate the impact of inherited variants in genes involved in oestrogen metabolism and signalling on change in mammographic percent density (MPD) with aromatase inhibitor (AI) therapy. Methods: Postmenopausal women with breast cancer who were initiating adjuvant AI therapy were enrolled onto a multicentre, randomised clinical trial of exemestane vs letrozole, designed to identify associations between AI-induced change in MPD and single-nucleotide polymorphisms in candidate genes. Subjects underwent unilateral craniocaudal mammography before and following 24 months of treatment. Results: Of the 503 enrolled subjects, 259 had both paired mammograms at baseline and following 24 months of treatment and evaluable DNA. We observed a statistically significant decrease in mean MPD from 17.1 to 15.1% (P<0.001), more pronounced in women with baseline MPD ⩾20%. No AI-specific difference in change in MPD was identified. No significant associations between change in MPD and inherited genetic variants were observed. Conclusion: Subjects with higher baseline MPD had a greater average decrease in MPD with AI therapy. There does not appear to be a substantial effect of inherited variants in biologically selected candidate genes.
  • Loading...
    Thumbnail Image
    Item
    Cytochrome P450 2D6 activity predicts discontinuation of tamoxifen therapy in breast cancer patients
    (Springer Nature, 2009-08) Rae, J. M.; Sikora, M. J.; Henry, N. L.; Li, L.; Kim, S.; Oesterreich, S.; Skaar, Todd C.; Nguyen, A. T.; Desta, Z.; Storniolo, A. M.; Flockhart, David A.; Hayes, D. F.; Stearns, V.
    The selective estrogen receptor modulator tamoxifen is routinely used for treatment and prevention of estrogen-receptor-positive breast cancer. Studies of tamoxifen adherence suggest that over half of patients discontinue treatment before the recommended 5 years. We hypothesized that polymorphisms in CYP2D6, the enzyme responsible for tamoxifen activation, predict for tamoxifen discontinuation. Tamoxifen-treated women (n=297) were genotyped for CYP2D6 variants and assigned a ‘score’ based on predicted allele activities from 0 (no activity) to 2 (high activity). Correlation between CYP2D6 score and discontinuation rates at 4 months was tested. We observed a strong nonlinear correlation between higher CYP2D6 score and increased rates of discontinuation (r2=0.935, P=0.018). These data suggest that presence of active CYP2D6 alleles may predict for higher likelihood of tamoxifen discontinuation. Therefore, patients who may be most likely to benefit from tamoxifen may paradoxically be most likely to discontinue treatment prematurely.
  • Loading...
    Thumbnail Image
    Item
    Estrogen receptor genotypes, menopausal status, and the effects of tamoxifen on lipid levels: revised and updated results.
    (Clinical pharmacology and therapeutics, 2010-11) Hayes, D.F.; Skaar, Todd C.; Rae, J.M.; Henry, N.L.; Nguyen, A.T.; Stearns, V.; Li, L.; Philips, S.; Desta, Z.; Flockhart, D.A.
    We previously reported that the ESR1 XbaI genotypes were associated with baseline and tamoxifen-induced serum lipid profiles. The analysis in that study was carried out by PCR followed by restriction-enzyme digestion. After reanalysis using more robust TaqMan assays, the findings related to ~10% of the genotypes for the ESR1 XbaI single-nucleotide polymorphism (SNP) were revised. For the other genotypes (i.e., ESR1 PvuII, ESR2, and CYP2D6), the results were nearly identical to those in the previous study. Upon reanalysis, previously reported associations between the ESR1 Xba1 genotypes and baseline triglyceride and low-density lipoprotein (LDL) cholesterol levels were no longer observed. Previously reported associations between the ESR1 XbaI genotypes and tamoxifen-induced changes in levels of total cholesterol, triglycerides, and high-density lipoprotein (HDL) cholesterol were also no longer observed. However, the following observations from the original report did not change: (i) the levels of circulating lipids are lower in women taking tamoxifen; (ii) there is an association between the ESR2-02 genotypes and changes in triglyceride levels; and (iii) neither ESR1 PvuII nor CYP2D6 is associated with any changes in serum lipid concentrations in patients receiving treatment with tamoxifen.
  • Loading...
    Thumbnail Image
    Item
    Lack of association between oestrogen receptor polymorphisms and change in bone mineral density with tamoxifen therapy.
    (Springer Nature, 2010-01-19) Henry, N. L.; Nguyen, A.; Azzouz, F.; Li, L.; Robarge, J.; Philips, S.; Cao, D.; Skaar, Todd C.; Rae, J. M.; Storniolo, A. M.; Flockhart, David A.; Hayes, D. F.; Stearns, V.
    BACKGROUND: Tamoxifen, a selective oestrogen receptor (ER) modulator, increases bone mineral density (BMD) in postmenopausal women and decreases BMD in premenopausal women. We hypothesised that inherited variants in candidate genes involved in oestrogen signalling and tamoxifen metabolism might be associated with tamoxifen effects in bone. METHODS: A total of 297 women who were initiating tamoxifen therapy were enrolled in a prospective multicentre clinical trial. Lumbar spine and total hip BMD values were measured using dual-energy X-ray absorptiometry (DXA) at baseline and after 12 months of tamoxifen therapy. Single-nucleotide polymorphisms (SNPs) in ESR1, ESR2, and CYP2D6 were tested for associations in the context of menopausal status and previous chemotherapy, with a mean percentage change in BMD over 12 months. RESULTS: The percentage increase in BMD was greater in postmenopausal women and in those patients who had been treated with chemotherapy. No significant associations between tested SNPs and either baseline BMD or change in BMD with 1 year of tamoxifen therapy were detected. CONCLUSION: The evaluated SNPs in ESR and CYP2D6 do not seem to influence BMD in tamoxifen-treated subjects.
  • Loading...
    Thumbnail Image
    Item
    A SNP in Steroid Receptor Coactivator-1 Disrupts a GSK3β Phosphorylation Site and Is Associated with Altered Tamoxifen Response in Bone
    (Oxford University Press, 2012-02) Hartmaier, R.J.; Richter, A.S.; Gillihan, R.M.; Sallit, J.Z.; McGuire, S.E.; Wang, J.; Lee, A.V.; Osborne, C.K.; O'Malley, B.W.; Brown, P.H.; Xu, J.; Skaar, Todd C.; Philips, S.; Rae, J.M.; Azzouz, F.; Li, L.; Hayden, J.; Henry, N.L.; Nguyen, A.T.; Stearns, V.; Hayes, D.F.; Flockhart, D.A.; Oesterreich, S.
    The coregulator steroid receptor coactivator (SRC)-1 increases transcriptional activity of the estrogen receptor (ER) in a number of tissues including bone. Mice deficient in SRC-1 are osteopenic and display skeletal resistance to estrogen treatment. SRC-1 is also known to modulate effects of selective ER modulators like tamoxifen. We hypothesized that single nucleotide polymorphisms (SNP) in SRC-1 may impact estrogen and/or tamoxifen action. Because the only nonsynonymous SNP in SRC-1 (rs1804645; P1272S) is located in an activation domain, it was examined for effects on estrogen and tamoxifen action. SRC-1 P1272S showed a decreased ability to coactivate ER compared with wild-type SRC-1 in multiple cell lines. Paradoxically, SRC-1 P1272S had an increased protein half-life. The Pro to Ser change disrupts a putative glycogen synthase 3 (GSK3)β phosphorylation site that was confirmed by in vitro kinase assays. Finally, knockdown of GSK3β increased SRC-1 protein levels, mimicking the loss of phosphorylation at P1272S. These findings are similar to the GSK3β-mediated phospho-ubiquitin clock previously described for the related coregulator SRC-3. To assess the potential clinical significance of this SNP, we examined whether there was an association between SRC-1 P1272S and selective ER modulators response in bone. SRC-1 P1272S was associated with a decrease in hip and lumbar bone mineral density in women receiving tamoxifen treatment, supporting our in vitro findings for decreased ER coactivation. In summary, we have identified a functional genetic variant of SRC-1 with decreased activity, resulting, at least in part, from the loss of a GSK3β phosphorylation site, which was also associated with decreased bone mineral density in tamoxifen-treated women.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University