- Browse by Author
Browsing by Author "Starmans, Maud H. W."
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Hypoxia promotes stem cell phenotypes and poor prognosis through epigenetic regulation of DICER(Nature Publishing Group, 2014-10-29) van den Beucken, Twan; Koch, Elizabeth; Chu, Kenneth; Rupaimoole, Rajesha; Prickaerts, Peggy; Adriaens, Michiel; Voncken, Jan Willem; Harris, Adrian L.; Buffa, Francesca M.; Haider, Syed; Starmans, Maud H. W.; Yao, Cindy Q.; Ivan, Mircea; Ivan, Cristina; Pecot, Chad V.; Boutros, Paul C.; Sood, Anil K.; Koritzinsky, Marianne; Wouters, Bradly G.; Department of Medicine, IU School of MedicineMicroRNAs are small regulatory RNAs that post-transcriptionally control gene expression. Reduced expression of DICER, the enzyme involved in microRNA processing, is frequently observed in cancer and is associated with poor clinical outcome in various malignancies. Yet the underlying mechanisms are not well understood. Here, we identify tumor hypoxia as a regulator of DICER expression in large cohorts of breast cancer patients. We show that DICER expression is suppressed by hypoxia through an epigenetic mechanism that involves inhibition of oxygen-dependent H3K27me3 demethylases KDM6A/B and results in silencing of the DICER promoter. Subsequently, reduced miRNA processing leads to derepression of the miR-200 target ZEB1, stimulates the epithelial to mesenchymal transition and ultimately results in the acquisition of stem cell phenotypes in human mammary epithelial cells. Our study uncovers a previously unknown relationship between oxygen-sensitive epigenetic regulators, miRNA biogenesis and tumor stem cell phenotypes that may underlie poor outcome in breast cancer.