- Browse by Author
Browsing by Author "Srivastava, Sankalp"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Asparagine bioavailability regulates the translation of MYC oncogene(Springer Nature, 2022) Srivastava, Sankalp; Jiang, Jie; Misra, Jagannath; Seim, Gretchen; Staschke, Kirk A.; Zhong, Minghua; Zhou, Leonardo; Liu, Yu; Chen, Chong; Davé, Utpal; Kapur, Reuben; Batra, Sandeep; Zhang, Chi; Zhou, Jiehao; Fan, Jing; Wek, Ronald C.; Zhang, Ji; Pediatrics, School of MedicineAmino acid restriction has recently emerged as a compelling strategy to inhibit tumor growth. Recent work suggests that amino acids can regulate cellular signaling in addition to their role as biosynthetic substrates. Using lymphoid cancer cells as a model, we found that asparagine depletion acutely reduces the expression of c-MYC protein without changing its mRNA expression. Furthermore, asparagine depletion inhibits the translation of MYC mRNA without altering the rate of MYC protein degradation. Of interest, the inhibitory effect on MYC mRNA translation during asparagine depletion is not due to the activation of the general controlled nonderepressible 2 (GCN2) pathway and is not a consequence of the inhibition of global protein synthesis. In addition, both the 5' and 3' untranslated regions (UTRs) of MYC mRNA are not required for this inhibitory effect. Finally, using a MYC-driven mouse B cell lymphoma model, we found that shRNA inhibition of asparagine synthetase (ASNS) or pharmacological inhibition of asparagine production can significantly reduce the MYC protein expression and tumor growth when environmental asparagine becomes limiting. Since MYC is a critical oncogene, our results uncover a molecular connection between MYC mRNA translation and asparagine bioavailability and shed light on a potential to target MYC oncogene post-transcriptionally through asparagine restriction.Item Asparagine starvation suppresses histone demethylation through iron depletion(Elsevier, 2023-03-16) Jiang, Jie; Srivastava, Sankalp; Liu, Sheng; Seim, Gretchen; Claude, Rodney; Zhong, Minghua; Cao, Sha; Davé, Utpal; Kapur, Reuben; Mosley, Amber L.; Zhang, Chi; Wan, Jun; Fan, Jing; Zhang, Ji; Pediatrics, School of MedicineIntracellular α-ketoglutarate is an indispensable substrate for the Jumonji family of histone demethylases (JHDMs) mediating most of the histone demethylation reactions. Since α-ketoglutarate is an intermediate of the tricarboxylic acid cycle and a product of transamination, its availability is governed by the metabolism of several amino acids. Here, we show that asparagine starvation suppresses global histone demethylation. This process is neither due to the change of expression of histone-modifying enzymes nor due to the change of intracellular levels of α-ketoglutarate. Rather, asparagine starvation reduces the intracellular pool of labile iron, a key co-factor for the JHDMs to function. Mechanistically, asparagine starvation suppresses the expression of the transferrin receptor to limit iron uptake. Furthermore, iron supplementation to the culture medium restores histone demethylation and alters gene expression to accelerate cell death upon asparagine depletion. These results suggest that suppressing iron-dependent histone demethylation is part of the cellular adaptive response to asparagine starvation.Item The Essential Role of the Non-Essential Amino Acid Asparagine in Lymphoid Malignancies(2023-05) Srivastava, Sankalp; Zhang, Ji; Dong, X. Charlie; Mosley, Amber L.; Wek, Ronald C.Cancer cells display increased metabolic demands to support their proliferation and biosynthetic needs. It has been extensively shown in cancers, that amino acids have functions beyond the role of mRNA translation. The breadth of functions makes amino acid restriction an effective strategy for cancer therapy; hence an important line of research involves targeting amino acid acquisition and metabolism therapeutically. Currently, asparagine depletion via L-Asparaginase in acute lymphoblastic leukemia (ALL) remains the only clinically approved therapy to date. In the first project, we showed that ALL cells are auxotrophic for asparagine and rely on exogenous sources for this non-essential amino acid. However, sensitivity to L-Asparaginase therapy is mitigated by the expression of the enzyme asparagine synthetase (ASNS), involved in de novo asparagine biosynthesis. We showed that this adaptive response requires two essential steps; demethylation of the ASNS promoter and recruitment of activating transcription factor 4 (ATF4) to the promoter to drive ASNS transcription. Our follow-up study in ALL cells showed that asparagine bioavailability (through de novo biosynthesis or exogenous sources) is essential to maintain the expression of the critical oncogene c-MYC. c-MYC is a potent transcription factor and is dysregulated in over 60% of cancers, including hematopoietic malignancies. We showed that this regulation by asparagine is primarily at the translation level and c-MYC expression is rescued only when exogenous asparagine is available or when cells can undertake de novo biosynthesis. At the biochemical level, asparagine depletion also causes an induction of ATF4 mediated stress response and suppression of global translation mediated by decreased mammalian target of rapamycin complex 1 (mTORC1) activity. However, we found that neither inhibition of the stress response or rescuing global translation rescued c-MYC protein expression. We also extended this observation to c-MYC-driven lymphomas using cell lines and orthotopic in vivo models. We showed that genetic inhibition of ASNS or pharmacological inhibition of asparagine production can significantly limit c-MYC protein and tumor growth when environmental asparagine is limiting. Overall, our work shows an essential role for asparagine in lymphoid cancers and has expanded on the usage of L-Asparaginase to resistant leukemias and lymphomas.Item Promoter demethylation of the asparagine synthetase gene is required for ATF4-dependent adaptation to asparagine depletion(Elsevier, 2019-12-06) Jiang, Jie; Srivastava, Sankalp; Seim, Gretchen; Pavlova, Natalya N.; King, Bryan; Zou, Lihua; Zhang, Chi; Zhong, Minghua; Feng, Hui; Kapur, Reuben; Wek, Ronald C.; Fan, Jing; Zhang, Ji; Pediatrics, School of MedicineTumor cells adapt to nutrient-limited environments by inducing gene expression that ensures adequate nutrients to sustain metabolic demands. For example, during amino acid limitations, ATF4 in the amino acid response induces expression of asparagine synthetase (ASNS), which provides for asparagine biosynthesis. Acute lymphoblastic leukemia (ALL) cells are sensitive to asparagine depletion, and administration of the asparagine depletion enzyme l-asparaginase is an important therapy option. ASNS expression can counterbalance l-asparaginase treatment by mitigating nutrient stress. Therefore, understanding the mechanisms regulating ASNS expression is important to define the adaptive processes underlying tumor progression and treatment. Here we show that DNA hypermethylation at the ASNS promoter prevents its transcriptional expression following asparagine depletion. Insufficient expression of ASNS leads to asparagine deficiency, which facilitates ATF4-independent induction of CCAAT-enhancer-binding protein homologous protein (CHOP), which triggers apoptosis. We conclude that chromatin accessibility is critical for ATF4 activity at the ASNS promoter, which can switch ALL cells from an ATF4-dependent adaptive response to ATF4-independent apoptosis during asparagine depletion. This work may also help explain why ALL cells are most sensitive to l-asparaginase treatment compared with other cancers.Item Starve Cancer Cells of Glutamine: Break the Spell or Make a Hungry Monster?(MDPI, 2019-06-11) Jiang, Jie; Srivastava, Sankalp; Zhang, Ji; Biochemistry & Molecular Biology, IU School of MedicineDistinct from normal differentiated tissues, cancer cells reprogram nutrient uptake and utilization to accommodate their elevated demands for biosynthesis and energy production. A hallmark of these types of reprogramming is the increased utilization of, and dependency on glutamine, a nonessential amino acid, for cancer cell growth and survival. It is well-accepted that glutamine is a versatile biosynthetic substrate in cancer cells beyond its role as a proteinogenic amino acid. In addition, accumulating evidence suggests that glutamine metabolism is regulated by many factors, including tumor origin, oncogene/tumor suppressor status, epigenetic alternations and tumor microenvironment. However, despite the emerging understanding of why cancer cells depend on glutamine for growth and survival, the contribution of glutamine metabolism to tumor progression under physiological conditions is still under investigation, partially because the level of glutamine in the tumor environment is often found low. Since targeting glutamine acquisition and utilization has been proposed to be a new therapeutic strategy in cancer, it is central to understand how tumor cells respond and adapt to glutamine starvation for optimized therapeutic intervention. In this review, we first summarize the diverse usage of glutamine to support cancer cell growth and survival, and then focus our discussion on the influence of other nutrients on cancer cell adaptation to glutamine starvation as well as its implication in cancer therapy.