- Browse by Author
Browsing by Author "Sridhar, Arthi"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Cardiac Troponin I-interacting Kinase impacts cardiomyocyte S-phase activity but not cardiomyocyte proliferation(American Heart Association, 2023) Reuter, Sean P.; Soonpaa, Mark H.; Field, Dorothy; Simpson, Ed; Rubart-von der Lohe, Michael; Lee, Han Kyu; Sridhar, Arthi; Ware, Stephanie M.; Green, Nick; Li, Xiaochun; Ofner, Susan; Marchuk, Douglas A.; Wollert, Kai C.; Field, Loren J.; Pediatrics, School of MedicineBackground: Identifying genetic variants that affect the level of cell cycle reentry and establishing the degree of cell cycle progression in those variants could help guide development of therapeutic interventions aimed at effecting cardiac regeneration. We observed that C57Bl6/NCR (B6N) mice have a marked increase in cardiomyocyte S-phase activity after permanent coronary artery ligation compared with infarcted DBA/2J (D2J) mice. Methods: Cardiomyocyte cell cycle activity after infarction was monitored in D2J, (D2J×B6N)-F1, and (D2J×B6N)-F1×D2J backcross mice by means of bromodeoxyuridine or 5-ethynyl-2'-deoxyuridine incorporation using a nuclear-localized transgenic reporter to identify cardiomyocyte nuclei. Genome-wide quantitative trait locus analysis, fine scale genetic mapping, whole exome sequencing, and RNA sequencing analyses of the backcross mice were performed to identify the gene responsible for the elevated cardiomyocyte S-phase phenotype. Results: (D2J×B6N)-F1 mice exhibited a 14-fold increase in cardiomyocyte S-phase activity in ventricular regions remote from infarct scar compared with D2J mice (0.798±0.09% versus 0.056±0.004%; P<0.001). Quantitative trait locus analysis of (D2J×B6N)-F1×D2J backcross mice revealed that the gene responsible for differential S-phase activity was located on the distal arm of chromosome 3 (logarithm of the odds score=6.38; P<0.001). Additional genetic and molecular analyses identified 3 potential candidates. Of these, Tnni3k (troponin I-interacting kinase) is expressed in B6N hearts but not in D2J hearts. Transgenic expression of TNNI3K in a D2J genetic background results in elevated cardiomyocyte S-phase activity after injury. Cardiomyocyte S-phase activity in both Tnni3k-expressing and Tnni3k-nonexpressing mice results in the formation of polyploid nuclei. Conclusions: These data indicate that Tnni3k expression increases the level of cardiomyocyte S-phase activity after injury.Item Congenital heart defects caused by FOXJ1(Oxford University Press, 2023) Padua, Maria B.; Helm, Benjamin M.; Wells, John R.; Smith, Amanda M.; Bellchambers, Helen M.; Sridhar, Arthi; Ware, Stephanie M.; Pediatrics, School of MedicineFOXJ1 is expressed in ciliated cells of the airways, testis, oviduct, central nervous system and the embryonic left-right organizer. Ablation or targeted mutation of Foxj1 in mice, zebrafish and frogs results in loss of ciliary motility and/or reduced length and number of motile cilia, affecting the establishment of the left-right axis. In humans, heterozygous pathogenic variants in FOXJ1 cause ciliopathy leading to situs inversus, obstructive hydrocephalus and chronic airway disease. Here, we report a novel truncating FOXJ1 variant (c.784_799dup; p.Glu267Glyfs*12) identified by clinical exome sequencing from a patient with isolated congenital heart defects (CHD) which included atrial and ventricular septal defects, double outlet right ventricle (DORV) and transposition of the great arteries. Functional experiments show that FOXJ1 c.784_799dup; p.Glu267Glyfs*12, unlike FOXJ1, fails to induce ectopic cilia in frog epidermis in vivo or to activate the ADGB promoter, a downstream target of FOXJ1 in cilia, in transactivation assays in vitro. Variant analysis of patients with heterotaxy or heterotaxy-related CHD indicates that pathogenic variants in FOXJ1 are an infrequent cause of heterotaxy. Finally, we characterize embryonic-stage CHD in Foxj1 loss-of-function mice, demonstrating randomized heart looping. Abnormal heart looping includes reversed looping (dextrocardia), ventral looping and no looping/single ventricle hearts. Complex CHDs revealed by histological analysis include atrioventricular septal defects, DORV, single ventricle defects as well as abnormal position of the great arteries. These results indicate that pathogenic variants in FOXJ1 can cause isolated CHD.Item Genetic Causes of Cardiomyopathy in Children: First Results From the Pediatric Cardiomyopathy Genes Study(American Heart Association, 2021-05-04) Ware, Stephanie M.; Wilkinson, James D.; Tariq, Muhammad; Schubert, Jeffrey A.; Sridhar, Arthi; Colan, Steven D.; Shi, Ling; Canter, Charles E.; Hsu, Daphne T.; Webber, Steven A.; Dodd, Debra A.; Everitt, Melanie D.; Kantor, Paul F.; Addonizio, Linda J.; Jefferies, John L.; Rossano, Joseph W.; Pahl, Elfriede; Rusconi, Paolo; Chung, Wendy K.; Lee, Teresa; Towbin, Jeffrey A.; Lal, Ashwin K.; Bhatnagar, Surbhi; Aronow, Bruce; Dexheimer, Phillip J.; Martin, Lisa J.; Miller, Erin M.; Sleeper, Lynn A.; Razoky, Hiedy; Czachor, Jason; Lipshultz, Steven E.; Pediatrics, School of MedicinePediatric cardiomyopathy is a genetically heterogeneous disease with substantial morbidity and mortality. Current guidelines recommend genetic testing in children with hypertrophic, dilated, or restrictive cardiomyopathy, but practice variations exist. Robust data on clinical testing practices and diagnostic yield in children are lacking. This study aimed to identify the genetic causes of cardiomyopathy in children and to investigate clinical genetic testing practices. Methods and Results Children with familial or idiopathic cardiomyopathy were enrolled from 14 institutions in North America. Probands underwent exome sequencing. Rare sequence variants in 37 known cardiomyopathy genes were assessed for pathogenicity using consensus clinical interpretation guidelines. Of the 152 enrolled probands, 41% had a family history of cardiomyopathy. Of 81 (53%) who had undergone clinical genetic testing for cardiomyopathy before enrollment, 39 (48%) had a positive result. Genetic testing rates varied from 0% to 97% between sites. A positive family history and hypertrophic cardiomyopathy subtype were associated with increased likelihood of genetic testing (P=0.005 and P=0.03, respectively). A molecular cause was identified in an additional 21% of the 63 children who did not undergo clinical testing, with positive results identified in both familial and idiopathic cases and across all phenotypic subtypes. Conclusions A definitive molecular genetic diagnosis can be made in a substantial proportion of children for whom the cause and heritable nature of their cardiomyopathy was previously unknown. Practice variations in genetic testing are great and should be reduced. Improvements can be made in comprehensive cardiac screening and predictive genetic testing in first-degree relatives. Overall, our results support use of routine genetic testing in cases of both familial and idiopathic cardiomyopathy.Item Imbalanced mitochondrial function provokes heterotaxy via aberrant ciliogenesis(American Society for Clinical Investigation, 2019-05-16) Burkhalter, Martin D.; Sridhar, Arthi; Sampaio, Pedro; Jacinto, Raquel; Burczyk, Martina S.; Donow, Cornelia; Angenendt, Max; Competence Network for Congenital Heart Defects Investigators; Hempel, Maja; Walther, Paul; Pennekamp, Petra; Omran, Heymut; Lopes, Susana S.; Ware, Stephanie M.; Philipp, Melanie; Pediatrics, School of MedicineAbout 1% of all newborns are affected by congenital heart disease (CHD). Recent findings identify aberrantly functioning cilia as a possible source for CHD. Faulty cilia also prevent the development of proper left-right asymmetry and cause heterotaxy, the incorrect placement of visceral organs. Intriguingly, signaling cascades such as mTor that influence mitochondrial biogenesis also affect ciliogenesis, and can cause heterotaxy-like phenotypes in zebrafish. Here, we identify levels of mitochondrial function as a determinant for ciliogenesis and a cause for heterotaxy. We detected reduced mitochondrial DNA content in biopsies of heterotaxy patients. Manipulation of mitochondrial function revealed a reciprocal influence on ciliogenesis and affected cilia-dependent processes in zebrafish, human fibroblasts and Tetrahymena thermophila. Exome analysis of heterotaxy patients revealed an increased burden of rare damaging variants in mitochondria-associated genes as compared to 1000 Genome controls. Knockdown of such candidate genes caused cilia elongation and ciliopathy-like phenotypes in zebrafish, which could not be rescued by RNA encoding damaging rare variants identified in heterotaxy patients. Our findings suggest that ciliogenesis is coupled to the abundance and function of mitochondria. Our data further reveal disturbed mitochondrial function as an underlying cause for heterotaxy-linked CHD and provide a mechanism for unexplained phenotypes of mitochondrial disease.Item The genetic architecture of pediatric cardiomyopathy(Elsevier, 2022) Ware, Stephanie M.; Bhatnagar, Surbhi; Dexheimer, Phillip J.; Wilkinson, James D.; Sridhar, Arthi; Fan, Xiao; Shen, Yufeng; Tariq, Muhammad; Schubert, Jeffrey A.; Colan, Steven D.; Shi, Ling; Canter, Charles E.; Hsu, Daphne T.; Bansal, Neha; Webber, Steven A.; Everitt, Melanie D.; Kantor, Paul F.; Rossano, Joseph W.; Pahl, Elfriede; Rusconi, Paolo; Lee, Teresa M.; Towbin, Jeffrey A.; Lal, Ashwin K.; Chung, Wendy K.; Miller, Erin M.; Aronow, Bruce; Martin, Lisa J.; Lipshultz, Steven E.; Pediatric Cardiomyopathy Registry Study Group; Pediatrics, School of MedicineTo understand the genetic contribution to primary pediatric cardiomyopathy, we performed exome sequencing in a large cohort of 528 children with cardiomyopathy. Using clinical interpretation guidelines and targeting genes implicated in cardiomyopathy, we identified a genetic cause in 32% of affected individuals. Cardiomyopathy sub-phenotypes differed by ancestry, age at diagnosis, and family history. Infants < 1 year were less likely to have a molecular diagnosis (p < 0.001). Using a discovery set of 1,703 candidate genes and informatic tools, we identified rare and damaging variants in 56% of affected individuals. We see an excess burden of damaging variants in affected individuals as compared to two independent control sets, 1000 Genomes Project (p < 0.001) and SPARK parental controls (p < 1 × 10-16). Cardiomyopathy variant burden remained enriched when stratified by ancestry, variant type, and sub-phenotype, emphasizing the importance of understanding the contribution of these factors to genetic architecture. Enrichment in this discovery candidate gene set suggests multigenic mechanisms underlie sub-phenotype-specific causes and presentations of cardiomyopathy. These results identify important information about the genetic architecture of pediatric cardiomyopathy and support recommendations for clinical genetic testing in children while illustrating differences in genetic architecture by age, ancestry, and sub-phenotype and providing rationale for larger studies to investigate multigenic contributions.