- Browse by Author
Browsing by Author "Spurney, Christopher"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Creation of a novel algorithm to identify patients with Becker and Duchenne muscular dystrophy within an administrative database and application of the algorithm to assess cardiovascular morbidity(Cambridge University Press, 2019-03) Soslow, Jonathan H.; Hall, Matthew; Burnette, W. Bryan; Hor, Kan; Chisolm, Joanne; Spurney, Christopher; Godown, Justin; Xu, Meng; Slaughter, James C.; Markham, Larry W.; Pediatrics, School of MedicineBACKGROUND: Outcome analyses in large administrative databases are ideal for rare diseases such as Becker and Duchenne muscular dystrophy. Unfortunately, Becker and Duchenne do not yet have specific International Classification of Disease-9/-10 codes. We hypothesised that an algorithm could accurately identify these patients within administrative data and improve assessment of cardiovascular morbidity. METHODS: Hospital discharges (n=13,189) for patients with muscular dystrophy classified by International Classification of Disease-9 code: 359.1 were identified from the Pediatric Health Information System database. An identification algorithm was created and then validated at three institutions. Multi-variable generalised linear mixed-effects models were used to estimate the associations of length of stay, hospitalisation cost, and 14-day readmission with age, encounter severity, and respiratory disease accounting for clustering within the hospital. RESULTS: The identification algorithm improved identification of patients with Becker and Duchenne from 55% (code 359.1 alone) to 77%. On bi-variate analysis, left ventricular dysfunction and arrhythmia were associated with increased cost of hospitalisation, length of stay, and mortality (p<0.001). After adjustment, Becker and Duchenne patients with left ventricular dysfunction and arrhythmia had increased length of stay with rate ratio 1.4 and 1.2 (p<0.001 and p=0.004) and increased cost of hospitalization with rate ratio 1.4 and 1.4 (both p<0.001). CONCLUSIONS: Our algorithm accurately identifies patients with Becker and Duchenne and can be used for future analysis of administrative data. Our analysis demonstrates the significant effects of cardiovascular disease on length of stay and hospitalisation cost in patients with Becker and Duchenne. Better recognition of the contribution of cardiovascular disease during hospitalisation with earlier more intensive evaluation and therapy may help improve outcomes in this patient population.Item Height Versus Body Surface Area to Normalize Cardiovascular Measurements in Children Using the Pediatric Heart Network Echocardiographic Z-Score Database(Springer, 2021) Mahgerefteh, Joseph; Lai, Wyman; Colan, Steven; Trachtenberg, Felicia; Gongwer, Russel; Stylianou, Mario; Bhat, Aarti H.; Goldberg, David; McCrindle, Brian; Frommelt, Peter; Sachdeva, Ritu; Shuplock, Jacqueline Marie; Spurney, Christopher; Troung, Dongngan; Cnota, James F.; Camarda, Joseph A.; Levine, Jami; Pignatelli, Ricardo; Altmann, Karen; van der Velde, Mary; Thankavel, Poonam Punjwani; Chowdhury, Shahryar; Srivastava, Shubhika; Johnson, Tiffanie R.; Lopez, Leo; Pediatric Heart Network Investigators; Pediatrics, School of MedicineNormalizing cardiovascular measurements for body size allows for comparison among children of different ages and for distinguishing pathologic changes from normal physiologic growth. Because of growing interest to use height for normalization, the aim of this study was to develop height-based normalization models and compare them to body surface area (BSA)-based normalization for aortic and left ventricular (LV) measurements. The study population consisted of healthy, non-obese children between 2 and 18 years of age enrolled in the Pediatric Heart Network Echo Z-Score Project. The echocardiographic study parameters included proximal aortic diameters at 3 locations, LV end-diastolic volume, and LV mass. Using the statistical methodology described in the original project, Z-scores based on height and BSA were determined for the study parameters and tested for any clinically significant relationships with age, sex, race, ethnicity, and body mass index (BMI). Normalization models based on height versus BSA were compared among underweight, normal weight, and overweight (but not obese) children in the study population. Z-scores based on height and BSA were calculated for the 5 study parameters and revealed no clinically significant relationships with age, sex, race, and ethnicity. Normalization based on height resulted in lower Z-scores in the underweight group compared to the overweight group, whereas normalization based on BSA resulted in higher Z-scores in the underweight group compared to the overweight group. In other words, increasing BMI had an opposite effect on height-based Z-scores compared to BSA-based Z-scores. Allometric normalization based on height and BSA for aortic and LV sizes is feasible. However, height-based normalization results in higher cardiovascular Z-scores in heavier children, and BSA-based normalization results in higher cardiovascular Z-scores in lighter children. Further studies are needed to assess the performance of these approaches in obese children with or without cardiac disease.