ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Spencer, John D."

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Deleted in malignant brain tumor 1 genetic variation confers urinary tract infection risk in children and mice
    (Wiley, 2021-07) Hains, David S.; Polley, Shamik; Liang, Dong; Saxena, Vijay; Arregui, Samuel; Ketz, John; Barr-Beare, Evan; Rawson, Ashley; Spencer, John D.; Cohen, Ariel; Hansen, Pernille L.; Tuttolomondo, Martina; Casella, Cinzia; Ditzel, Henrik J.; Cohen, Daniel; Hollox, Edward J.; Schwaderer, Andrew L.; Pediatrics, School of Medicine
  • Loading...
    Thumbnail Image
    Item
    Human neutrophil peptides 1-3 protect the murine urinary tract from uropathogenic Escherichia coli challenge
    (National Academy of Science, 2022) Canas, Jorge J.; Liang, Dong; Saxena, Vijay; Hooks, Jenaya; Arregui, Samuel W.; Gao, Hongyu; Liu, Yunlong; Kish, Danielle; Linn, Sarah C.; Bdeir, Khalil; Cines, Douglas B.; Fairchild, Robert L.; Spencer, John D.; Schwaderer, Andrew L.; Hains, David S.; Pediatrics, School of Medicine
    Antimicrobial peptides (AMPs) are critical to the protection of the urinary tract of humans and other animals from pathogenic microbial invasion. AMPs rapidly destroy pathogens by disrupting microbial membranes and/or augmenting or inhibiting the host immune system through a variety of signaling pathways. We have previously demonstrated that alpha-defensins 1-3 (DEFA1A3) are AMPs expressed in the epithelial cells of the human kidney collecting duct in response to uropathogens. We also demonstrated that DNA copy number variations in the DEFA1A3 locus are associated with UTI and pyelonephritis risk. Because DEFA1A3 is not expressed in mice, we utilized human DEFA1A3 gene transgenic mice (DEFA4/4) to further elucidate the biological relevance of this locus in the murine urinary tract. We demonstrate that the kidney transcriptional and translational expression pattern is similar in humans and the human gene transgenic mouse upon uropathogenic Escherichia coli (UPEC) stimulus in vitro and in vivo. We also demonstrate transgenic human DEFA4/4 gene mice are protected from UTI and pyelonephritis under various UPEC challenges. This study serves as the foundation to start the exploration of manipulating the DEFA1A3 locus and alpha-defensins 1-3 expression as a potential therapeutic target for UTIs and other infectious diseases.
  • Loading...
    Thumbnail Image
    Item
    Ribonuclease 7 polymorphism rs1263872 reduces antimicrobial activity and associates with pediatric urinary tract infections
    (The American Society for Clinical Investigation, 2021) Pierce, Keith R.; Eichler, Tad; Mosquera Vasquez, Claudia; Schwaderer, Andrew L.; Simoni, Aaron; Creacy, Steven; Hains, David S.; Spencer, John D.; Pediatrics, School of Medicine
    Ribonuclease 7 (RNase 7) is an antimicrobial peptide that prevents urinary tract infections (UTI); however, it is yet unknown how RNASE7 genetic variations affect its antimicrobial activity and its mitigation of UTI risk. This study determined whether the RNASE7 SNP rs1263872 is more prevalent in children with UTI and defined how rs1263872 affects RNase 7’s antimicrobial activity against uropathogenic E. coli (UPEC). We performed genotyping for rs1263872 in 2 national UTI cohorts, including children enrolled in the Randomized Intervention for Children with Vesicoureteral Reflux trial or the Careful Urinary Tract Infection Evaluation study. Genotypes from these cohorts were compared with those of female controls with no UTI. To assess whether rs1263872 affects RNase 7’s antimicrobial activity, we generated RNase 7 peptides and genetically modified urothelial cultures encoding wild-type RNase 7 and its variant. Compared with controls, girls in both UTI cohorts had an increased prevalence of the RNASE7 variant. Compared with the missense variant, wild-type RNase 7 peptide showed greater bactericidal activity against UPEC. Wild-type RNase 7 overexpression in human urothelial cultures reduced UPEC invasive infection compared with mutant overexpression. These results show that children with UTI have an increased prevalence of RNASE7 rs1263872, which may increase UTI susceptibility by suppressing RNase 7’s antibacterial activity.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University