- Browse by Author
Browsing by Author "Soto-Beasley, Alexandra I."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Creating the Pick's disease International Consortium: Association study of MAPT H2 haplotype with risk of Pick's disease(medRxiv, 2023-04-24) Valentino, Rebecca R.; Scotton, William J.; Roemer, Shanu F.; Lashley, Tammaryn; Heckman, Michael G.; Shoai, Maryam; Martinez-Carrasco, Alejandro; Tamvaka, Nicole; Walton, Ronald L.; Baker, Matthew C.; Macpherson, Hannah L.; Real, Raquel; Soto-Beasley, Alexandra I.; Mok, Kin; Revesz, Tamas; Warner, Thomas T.; Jaunmuktane, Zane; Boeve, Bradley F.; Christopher, Elizabeth A.; DeTure, Michael; Duara, Ranjan; Graff-Radford, Neill R.; Josephs, Keith A.; Knopman, David S.; Koga, Shunsuke; Murray, Melissa E.; Lyons, Kelly E.; Pahwa, Rajesh; Parisi, Joseph E.; Petersen, Ronald C.; Whitwell, Jennifer; Grinberg, Lea T.; Miller, Bruce; Schlereth, Athena; Seeley, William W.; Spina, Salvatore; Grossman, Murray; Irwin, David J.; Lee, Edward B.; Suh, EunRan; Trojanowski, John Q.; Van Deerlin, Vivianna M.; Wolk, David A.; Connors, Theresa R.; Dooley, Patrick M.; Frosch, Matthew P.; Oakley, Derek H.; Aldecoa, Iban; Balasa, Mircea; Gelpi, Ellen; Borrego-Écija, Sergi; de Eugenio Huélamo, Rosa Maria; Gascon-Bayarri, Jordi; Sánchez-Valle, Raquel; Sanz-Cartagena, Pilar; Piñol-Ripoll, Gerard; Molina-Porcel, Laura; Bigio, Eileen H.; Flanagan, Margaret E.; Gefen, Tamar; Rogalski, Emily J.; Weintraub, Sandra; Redding-Ochoa, Javier; Chang, Koping; Troncoso, Juan C.; Prokop, Stefan; Newell, Kathy L.; Ghetti, Bernardino; Jones, Matthew; Richardson, Anna; Robinson, Andrew C.; Roncaroli, Federico; Snowden, Julie; Allinson, Kieren; Green, Oliver; Rowe, James B.; Singh, Poonam; Beach, Thomas G.; Serrano, Geidy E.; Flowers, Xena E.; Goldman, James E.; Heaps, Allison C.; Leskinen, Sandra P.; Teich, Andrew F.; Black, Sandra E.; Keith, Julia L.; Masellis, Mario; Bodi, Istvan; King, Andrew; Sarraj, Safa-Al; Troakes, Claire; Halliday, Glenda M.; Hodges, John R.; Kril, Jillian J.; Kwok, John B.; Piguet, Olivier; Gearing, Marla; Arzberger, Thomas; Roeber, Sigrun; Attems, Johannes; Morris, Christopher M.; Thomas, Alan J.; Evers, Bret M.; White, Charles L.; Mechawar, Naguib; Sieben, Anne A.; Cras, Patrick P.; De Vil, Bart B.; De Deyn, Peter Paul P. P.; Duyckaerts, Charles; Le Ber, Isabelle; Seihean, Danielle; Turbant-Leclere, Sabrina; MacKenzie, Ian R.; McLean, Catriona; Cykowski, Matthew D.; Ervin, John F.; Wang, Shih-Hsiu J.; Graff, Caroline; Nennesmo, Inger; Nagra, Rashed M.; Riehl, James; Kovacs, Gabor G.; Giaccone, Giorgio; Nacmias, Benedetta; Neumann, Manuela; Ang, Lee-Cyn; Finger, Elizabeth C.; Blauwendraat, Cornelis; Nalls, Mike A.; Singleton, Andrew B.; Vitale, Dan; Cunha, Cristina; Carvalho, Agostinho; Wszolek, Zbigniew K.; Morris, Huw R.; Rademakers, Rosa; Hardy, John A.; Dickson, Dennis W.; Rohrer, Jonathan D.; Ross, Owen A.; Pathology and Laboratory Medicine, School of MedicineBackground: Pick's disease (PiD) is a rare and predominantly sporadic form of frontotemporal dementia that is classified as a primary tauopathy. PiD is pathologically defined by argyrophilic inclusion Pick bodies and ballooned neurons in the frontal and temporal brain lobes. PiD is characterised by the presence of Pick bodies which are formed from aggregated, hyperphosphorylated, 3-repeat tau proteins, encoded by the MAPT gene. The MAPT H2 haplotype has consistently been associated with a decreased disease risk of the 4-repeat tauopathies of progressive supranuclear palsy and corticobasal degeneration, however its role in susceptibility to PiD is unclear. The primary aim of this study was to evaluate the association between MAPT H2 and risk of PiD. Methods: We established the Pick's disease International Consortium (PIC) and collected 338 (60.7% male) pathologically confirmed PiD brains from 39 sites worldwide. 1,312 neurologically healthy clinical controls were recruited from Mayo Clinic Jacksonville, FL (N=881) or Rochester, MN (N=431). For the primary analysis, subjects were directly genotyped for MAPT H1-H2 haplotype-defining variant rs8070723. In secondary analysis, we genotyped and constructed the six-variant MAPT H1 subhaplotypes (rs1467967, rs242557, rs3785883, rs2471738, rs8070723, and rs7521). Findings: Our primary analysis found that the MAPT H2 haplotype was associated with increased risk of PiD (OR: 1.35, 95% CI: 1.12-1.64 P=0.002). In secondary analysis involving H1 subhaplotypes, a protective association with PiD was observed for the H1f haplotype (0.0% vs. 1.2%, P=0.049), with a similar trend noted for H1b (OR: 0.76, 95% CI: 0.58-1.00, P=0.051). The 4-repeat tauopathy risk haplotype MAPT H1c was not associated with PiD susceptibility (OR: 0.93, 95% CI: 0.70-1.25, P=0.65). Interpretation: The PIC represents the first opportunity to perform relatively large-scale studies to enhance our understanding of the pathobiology of PiD. This study demonstrates that in contrast to its protective role in 4R tauopathies, the MAPT H2 haplotype is associated with an increased risk of PiD. This finding is critical in directing isoform-related therapeutics for tauopathies.Item Systematic rare variant analyses identify RAB32 as a susceptibility gene for familial Parkinson's disease(Springer Nature, 2024) Hop, Paul J.; Lai, Dongbing; Keagle, Pamela J.; Baron, Desiree M.; Kenna, Brendan J.; Kooyman, Maarten; Shankaracharya; Halter, Cheryl; Straniero, Letizia; Asselta, Rosanna; Bonvegna, Salvatore; Soto-Beasley, Alexandra I.; Project MinE ALS Sequencing Consortium; Wszolek, Zbigniew K.; Uitti, Ryan J.; Isaias, Ioannis Ugo; Pezzoli, Gianni; Ticozzi, Nicola; Ross, Owen A.; Veldink, Jan H.; Foroud, Tatiana M.; Kenna, Kevin P.; Landers, John E.; Medical and Molecular Genetics, School of MedicineDespite substantial progress, causal variants are identified only for a minority of familial Parkinson's disease (PD) cases, leaving high-risk pathogenic variants unidentified1,2. To identify such variants, we uniformly processed exome sequencing data of 2,184 index familial PD cases and 69,775 controls. Exome-wide analyses converged on RAB32 as a novel PD gene identifying c.213C > G/p.S71R as a high-risk variant presenting in ~0.7% of familial PD cases while observed in only 0.004% of controls (odds ratio of 65.5). This variant was confirmed in all cases via Sanger sequencing and segregated with PD in three families. RAB32 encodes a small GTPase known to interact with LRRK2 (refs. 3,4). Functional analyses showed that RAB32 S71R increases LRRK2 kinase activity, as indicated by increased autophosphorylation of LRRK2 S1292. Here our results implicate mutant RAB32 in a key pathological mechanism in PD-LRRK2 kinase activity5-7-and thus provide novel insights into the mechanistic connections between RAB family biology, LRRK2 and PD risk.