- Browse by Author
Browsing by Author "Sonenberg, Nahum"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Insulin regulates carboxypeptidase E by modulating translation initiation scaffolding protein eIF4G1 in pancreatic β cells(PNAS, 2014-06-03) Liew, Chong Wee; Assmann, Anke; Templin, Andrew T.; Raum, Jeffrey C.; Lipson, Kathryn L.; Rajan, Rajan; Qiang, Guifen; Hu, Jiang; Kawamori, Dan; Lindberg, Iris; Philipson, Louis H.; Sonenberg, Nahum; Goldfine, Allison B.; Stoffers, Doris A.; Mirmira, Raghavendra G.; Urano, Fumihiko; Kulkarni, Rohit N.; Department of Cellular & Integrative Physiology, IU School of MedicineInsulin resistance, hyperinsulinemia, and hyperproinsulinemia occur early in the pathogenesis of type 2 diabetes (T2D). Elevated levels of proinsulin and proinsulin intermediates are markers of β-cell dysfunction and are strongly associated with development of T2D in humans. However, the mechanism(s) underlying β-cell dysfunction leading to hyperproinsulinemia is poorly understood. Here, we show that disruption of insulin receptor (IR) expression in β cells has a direct impact on the expression of the convertase enzyme carboxypeptidase E (CPE) by inhibition of the eukaryotic translation initiation factor 4 gamma 1 translation initiation complex scaffolding protein that is mediated by the key transcription factors pancreatic and duodenal homeobox 1 and sterol regulatory element-binding protein 1, together leading to poor proinsulin processing. Reexpression of IR or restoring CPE expression each independently reverses the phenotype. Our results reveal the identity of key players that establish a previously unknown link between insulin signaling, translation initiation, and proinsulin processing, and provide previously unidentified mechanistic insight into the development of hyperproinsulinemia in insulin-resistant states.Item Loss of mTORC1 signalling impairs β-cell homeostasis and insulin processing(Nature Communication Group, 2017-07-12) Blandino-Rosano, Manuel; Barbaresso, Rebecca; Jimenez-Palomares, Margarita; Bozadjieva, Nadejda; Werneck-de-Castro, Joao Pedro; Hatanaka, Masayuki; Mirmira, Raghavendra G.; Sonenberg, Nahum; Liu, Ming; Rüegg, Markus A.; Hall, Michael N.; Bernal-Mizrachi, Ernesto; Pediatrics, School of MedicineDeregulation of mTOR complex 1 (mTORC1) signalling increases the risk for metabolic diseases, including type 2 diabetes. Here we show that β-cell-specific loss of mTORC1 causes diabetes and β-cell failure due to defects in proliferation, autophagy, apoptosis and insulin secretion by using mice with conditional (βraKO) and inducible (MIP-βraKOf/f) raptor deletion. Through genetic reconstitution of mTORC1 downstream targets, we identify mTORC1/S6K pathway as the mechanism by which mTORC1 regulates β-cell apoptosis, size and autophagy, whereas mTORC1/4E-BP2-eIF4E pathway regulates β-cell proliferation. Restoration of both pathways partially recovers β-cell mass and hyperglycaemia. This study also demonstrates a central role of mTORC1 in controlling insulin processing by regulating cap-dependent translation of carboxypeptidase E in a 4EBP2/eIF4E-dependent manner. Rapamycin treatment decreases CPE expression and insulin secretion in mice and human islets. We suggest an important role of mTORC1 in β-cells and identify downstream pathways driving β-cell mass, function and insulin processing.