- Browse by Author
Browsing by Author "Smith, Laura"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Somatic cell hemoglobin modulates nitrogen oxide metabolism in the human airway epithelium(Springer Nature, 2021-07-29) Marozkina, Nadzeya; Smith, Laura; Zhao, Yi; Zein, Joe; Chmiel, James F.; Kim, Jeeho; Kiselar, Janna; Davis, Michael D.; Cunningham, Rebekah S.; Randell, Scott H.; Gaston, Benjamin; Pediatrics, School of MedicineEndothelial hemoglobin (Hb)α regulates endothelial nitric oxide synthase (eNOS) biochemistry. We hypothesized that Hb could also be expressed and biochemically active in the ciliated human airway epithelium. Primary human airway epithelial cells, cultured at air–liquid interface (ALI), were obtained by clinical airway brushings or from explanted lungs. Human airway Hb mRNA data were from publically available databases; or from RT-PCR. Hb proteins were identified by immunoprecipitation, immunoblot, immunohistochemistry, immunofluorescence and liquid chromatography- mass spectrometry. Viral vectors were used to alter Hbβ expression. Heme and nitrogen oxides were measured colorimetrically. Hb mRNA was expressed in human ciliated epithelial cells. Heme proteins (Hbα, β, and δ) were detected in ALI cultures by several methods. Higher levels of airway epithelial Hbβ gene expression were associated with lower FEV1 in asthma. Both Hbβ knockdown and overexpression affected cell morphology. Hbβ and eNOS were apically colocalized. Binding heme with CO decreased extracellular accumulation of nitrogen oxides. Human airway epithelial cells express Hb. Higher levels of Hbβ gene expression were associated with airflow obstruction. Hbβ and eNOS were colocalized in ciliated cells, and heme affected oxidation of the NOS product. Epithelial Hb expression may be relevant to human airways diseases.Item A Treatment to Eliminate SARS-CoV-2 Replication in Human Airway Epithelial Cells Is Safe for Inhalation as an Aerosol in Healthy Human Subjects(American Association for Respiratory Care (AARC), 2020-09-21) Davis, Michael D.; Clemente, Tatiana M.; Giddings, Olivia K.; Ross, Kristie; Cunningham, Rebekah S.; Smith, Laura; Simpson, Edward; Liu, Yunlong; Kloepfer, Kirsten; Ramsey, I. Scott; Zhao, Yi; Robinson, Christopher M.; Gilk, Stacey D.; Gaston, Benjamin; Pediatrics, School of MedicineBackground: Low airway surface pH is associated with many airway diseases, impairs antimicrobial host defense and worsens airway inflammation. Inhaled Optate is designed to safely to raise airway surface pH and is well-tolerated in humans. Raising intracellular pH partially prevents activation of SARS-CoV-2 in primary normal human airway epithelial (NHAE) cells, decreasing viral replication by several mechanisms. Methods: Here, we grew primary normal human airway epithelial (NHAE) cells from healthy subjects, infected them with SARS-CoV-2 (isolate USA-WA1/2020), and used clinical Optate at concentrations used in humans in vivo to determine whether it would prevent viral infection and replication. Cells were pre-treated with Optate or placebo prior to infection (MOI of 0.1) and viral replication was determined by plaque assay and nucleocapsid (N) protein levels. Healthy human subjects also inhaled Optate as part of a Phase 2a safety trial. Results: Optate almost completely prevented viral replication at each time point between 24 and 120 hours, relative to placebo, both by plaque assay and by N protein expression (p < 0.001). Mechanistically, Optate inhibited expression of major endosomal trafficking genes and raised NHAE intracellular pH. Optate had no effect on NHAE cell viability at any time point. Inhaled Optate was well tolerated in 10 normal subjects, with no change in lung function, vital signs or oxygenation. Conclusions: Inhaled Optate may be well-suited for a clinical trial in patients with a pulmonary SARS-CoV-2 infection. However, it is vitally important for patient safety that formulations designed for inhalation with regards to pH, isotonicity and osmolality be used. An inhalational treatment that safely prevents SARS-CoV-2 viral replication could be helpful for treating patients with pulmonary SARS-CoV-2 infection.Item Voltage-gated potassium channel proteins and stereoselective S-nitroso-l-cysteine signaling(American Society for Clinical Investigation, 2020-08-13) Gaston, Benjamin; Smith, Laura; Bosch, Jürgen; Seckler, James; Kunze, Diana; Kiselar, Janna; Marozkina, Nadzeya; Hodges, Craig A.; Wintrobe, Patrick; McGee, Kellen; Morozkina, Tatiana S.; Burton, Spencer T.; Lewis, Tristan; Strassmaier, Timothy; Getsy, Paulina; Bates, James N.; Lewis, Stephen J.; Pediatrics, School of MedicineS-nitroso-l-cysteine (L-CSNO) behaves as a ligand. Its soluble guanylate cyclase–independent (sGC-independent) effects are stereoselective — that is, not recapitulated by S-nitroso-d-cysteine (D-CSNO) — and are inhibited by chemical congeners. However, candidate L-CSNO receptors have not been identified. Here, we have used 2 complementary affinity chromatography assays — followed by unbiased proteomic analysis — to identify voltage-gated K+ channel (Kv) proteins as binding partners for L-CSNO. Stereoselective L-CSNO–Kv interaction was confirmed structurally and functionally using surface plasmon resonance spectroscopy; hydrogen deuterium exchange; and, in Kv1.1/Kv1.2/Kvβ2-overexpressing cells, patch clamp assays. Remarkably, these sGC-independent L-CSNO effects did not involve S-nitrosylation of Kv proteins. In isolated rat and mouse respiratory control (petrosyl) ganglia, L-CSNO stereoselectively inhibited Kv channel function. Genetic ablation of Kv1.1 prevented this effect. In intact animals, L-CSNO injection at the level of the carotid body dramatically and stereoselectively increased minute ventilation while having no effect on blood pressure; this effect was inhibited by the L-CSNO congener S-methyl-l-cysteine. Kv proteins are physiologically relevant targets of endogenous L-CSNO. This may be a signaling pathway of broad relevance.