ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Smith, Jeffrey C."

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Analysis of excitatory and inhibitory interactions at high temporal resolution in core circuits of the respiratory CPG
    (Springer Nature, 2012-07-16) Molkov, Yaroslav I.; Borgmann, Anke; Zhang, Ruli; Rybak, Ilya A.; Smith, Jeffrey C.; Mathematical Sciences, School of Science
  • Loading...
    Thumbnail Image
    Item
    Effects of Glycinergic Inhibition Failure on Respiratory Rhythm and Pattern Generation
    (Elsevier, 2014) Shevtsova, Natalia A.; Büsselberg, Dietrich; Molkov, Yaroslav I.; Bischoff, Anne M.; Smith, Jeffrey C.; Richter, Diethelm W.; Rybak, Ilya A.; Mathematical Sciences, School of Science
    Inhibitory interactions between neurons of the respiratory network are involved in rhythm generation and pattern formation. Using a computational model of brainstem respiratory networks, we investigated the possible effects of suppressing glycinergic inhibition on the activity of different respiratory neuron types. Our study revealed that progressive suppression of glycinergic inhibition affected all neurons of the network and disturbed neural circuits involved in termination of inspiration. Causal was a dysfunction of postinspiratory inhibition targeting inspiratory neurons, which often led to irregular preterm reactivation of these neurons, producing double or multiple short-duration inspiratory bursts. An increasing blockade of glycinergic inhibition led to apneustic inspiratory activity. Similar disturbances of glycinergic inhibition also occur during hypoxia. A clear difference in prolonged hypoxia, however, is that the rhythm terminates in expiratory apnea. The critical function of glycinergic inhibition for normal respiratory rhythm generation and the consequences of its reduction, including in pathological conditions, are discussed.
  • Loading...
    Thumbnail Image
    Item
    Modeling Na+- and Ca2+-dependent mechanisms of rhythmic bursting in excitatory neural networks
    (Springer Nature, 2012-07-16) Rybak, Ilya A.; Jasinski, Patrick E.; Molkov, Yaroslav I.; Shevtsova, Natalia A.; Smith, Jeffrey C.; Mathematical Sciences, School of Science
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University