ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Slinker, Jason D."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Detecting Attomolar DNA-Damaging Anticancer Drug Activity in Cell Lysates with Electrochemical DNA Devices
    (American Chemical Society, 2021-07-23) Wettasinghe, Ashan P.; Singh, Naveen; Starcher, Colton L.; DiTusa, Chloe C.; Ishak-Boushaki, Zakari; Kahanda, Dimithree; McMullen, Reema; Motea, Edward A.; Slinker, Jason D.; Biochemistry and Molecular Biology, School of Medicine
    Here, we utilize electrochemical DNA devices to quantify and understand the cancer-specific DNA-damaging activity of an emerging drug in cellular lysates at femtomolar and attomolar concentrations. Isobutyl-deoxynyboquinone (IB-DNQ), a potent and tumor-selective NAD(P)H quinone oxidoreductase 1 (NQO1) bioactivatable drug, was prepared and biochemically verified in cancer cells highly expressing NQO1 (NQO1+) and knockdowns with low NQO1 expression (NQO1−) by Western blot, NQO1 activity analysis, survival assays, oxygen consumption rate, extracellular acidification rate, and peroxide production. Lysates from these cells and the IB-DNQ drug were then introduced to a chip system bearing an array of DNA-modified electrodes, and their DNA-damaging activity was quantified by changes in DNA-mediated electrochemistry arising from base-excision repair. Device-level controls of NQO1 activity and kinetic analysis were used to verify and further understand the IB-DNQ activity. A 380 aM IB-DNQ limit of detection and a 1.3 fM midpoint of damage were observed in NQO1+ lysates, both metrics 2 orders of magnitude lower than NQO1− lysates, indicating the high IB-DNQ potency and selectivity for NQO1+ cancers. The device-level damage midpoint concentration in NQO1+ lysates was over 8 orders of magnitude lower than cell survival benchmarks, likely due to poor IB-DNQ cellular uptake, demonstrating that these devices can identify promising drugs requiring improved cell permeability. Ultimately, these results indicate the noteworthy potency and selectivity of IB-DNQ and the high sensitivity and precision of electrochemical DNA devices to analyze agents/drugs involved in DNA-damaging chemotherapies.
  • Loading...
    Thumbnail Image
    Item
    Following Anticancer Drug Activity in Cell Lysates with DNA Devices
    (Elsevier, 2018-11) Kahanda, Dimithree; Singh, Naveen; Boothman, David A.; Slinker, Jason D.; Biochemistry and Molecular Biology, School of Medicine
    There is a great need to track the selectivity of anticancer drug activity and to understand the mechanisms of associated biological activity. Here we focus our studies on the specific NQO1 bioactivatable drug, ß-lapachone, which is in several Phase I clinical trials to treat human non-small cell lung, pancreatic and breast cancers. Multi-electrode chips with electrochemically-active DNA monolayers are used to track anticancer drug activity in cellular lysates and correlate cell death activity with DNA damage. Cells were prepared from the triple-negative breast cancer (TNBC) cell line, MDA-MB-231 (231) to be proficient or deficient in expression of the NAD(P)H:quinone oxidoreductase 1 (NQO1) enzyme, which is overexpressed in most solid cancers and lacking in control healthy cells. Cells were lysed and added to chips, and the impact of β-lapachone (β-lap), an NQO1-dependent DNA-damaging drug, was tracked with DNA electrochemical signal changes arising from drug-induced DNA damage. Electrochemical DNA devices showed a 3.7-fold difference in the electrochemical responses in NQO1+ over NQO1− cell lysates, as well as 10–20-fold selectivity to catalase and dicoumarol controls that deactivate DNA damaging pathways. Concentration-dependence studies revealed that 1.4 µM β-lap correlated with the onset of cell death from viability assays and the midpoint of DNA damage on the chip, and 2.5 µM β-lap correlated with the midpoint of cell death and the saturation of DNA damage on the chip. Results indicate that these devices could inform therapeutic decisions for cancer treatment.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University