- Browse by Author
Browsing by Author "Slesinger, Paul"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Integrated Single-Cell Multiomic Profiling of Caudate Nucleus Suggests Key Mechanisms in Alcohol Use Disorder(bioRxiv, 2024-08-06) Green, Nick; Gao, Hongyu; Chu, Xiaona; Yuan, Quiyue; McGuire, Patrick; Lai, Dongbing; Jiang, Guanglong; Xuei, Xiaoling; Reiter, Jill; Stevens, Julia; Sutherland, Greg; Goate, Alison; Pang, Zhiping; Slesinger, Paul; Hart, Ronald P.; Tischfield, Jay A.; Agrawal, Arpana; Wang, Yue; Duren, Zhana; Edenberg, Howard J.; Liu, Yunlong; Medical and Molecular Genetics, School of MedicineAlcohol use disorder (AUD) is likely associated with complex transcriptional alterations in addiction-relevant brain regions. We characterize AUD-associated differences in cell type-specific gene expression and chromatin accessibility in the caudate nucleus by conducting a single-nucleus RNA-seq assay and a single-nucleus RNA-seq + ATAC-seq (multiome) assay on caudate tissue from 143 human postmortem brains (74 with AUD). We identified 17 cell types. AUD was associated with a higher proportion of microglia in an activated state and more astrocytes in a reactive state. There was widespread evidence for differentially expressed genes across cell types with the most identified in oligodendrocytes and astrocytes, including genes involved in immune response and synaptic regulation, many of which appeared to be regulated in part by JUND and OLIG2. Microglia-astrocyte communication via interleukin-1 beta, and microglia-astrocyte-oligodendrocyte interaction via transforming growth factor beta 1 were increased in individuals with AUD. Expression quantitative trait loci analysis revealed potential driver genes of AUD, including ADAL, that may protect against AUD in medium spiny neurons and interneurons. This work provides a thorough profile of the effects of AUD in the human brain and identifies several promising genes for further study.Item The Collaborative Study on the Genetics of Alcoholism: Overview(Wiley, 2023) Agrawal, Arpana; Brislin, Sarah J.; Bucholz, Kathleen K.; Dick, Danielle; Hart, Ronald P.; Johnson, Emma C.; Meyers, Jacquelyn; Salvatore, Jessica; Slesinger, Paul; COGA Collaborators; Almasy, Laura; Foroud, Tatiana; Goate, Alison; Hesselbrock, Victor; Kramer, John; Kuperman, Samuel; Merikangas, Alison K.; Nurnberger, John I.; Tischfield, Jay; Edenberg, Howard J.; Porjesz, Bernice; Medical and Molecular Genetics, School of MedicineAlcohol use disorders (AUD) are commonly occurring, heritable and polygenic disorders with etiological origins in the brain and the environment. To outline the causes and consequences of alcohol-related milestones, including AUD, and their related psychiatric comorbidities, the Collaborative Study on the Genetics of Alcoholism (COGA) was launched in 1989 with a gene-brain-behavior framework. COGA is a family based, diverse (~25% self-identified African American, ~52% female) sample, including data on 17,878 individuals, ages 7-97 years, in 2246 families of which a proportion are densely affected for AUD. All participants responded to questionnaires (e.g., personality) and the Semi-Structured Assessment for the Genetics of Alcoholism (SSAGA) which gathers information on psychiatric diagnoses, conditions and related behaviors (e.g., parental monitoring). In addition, 9871 individuals have brain function data from electroencephalogram (EEG) recordings while 12,009 individuals have been genotyped on genome-wide association study (GWAS) arrays. A series of functional genomics studies examine the specific cellular and molecular mechanisms underlying AUD. This overview provides the framework for the development of COGA as a scientific resource in the past three decades, with individual reviews providing in-depth descriptions of data on and discoveries from behavioral and clinical, brain function, genetic and functional genomics data. The value of COGA also resides in its data sharing policies, its efforts to communicate scientific findings to the broader community via a project website and its potential to nurture early career investigators and to generate independent research that has broadened the impact of gene-brain-behavior research into AUD.