- Browse by Author
Browsing by Author "Skurat, Alexander V."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Impaired malin expression and interaction with partner proteins in Lafora disease(Elsevier, 2024) Skurat, Alexander V.; Segvich, Dyann M.; Contreras, Christopher J.; Hu, Yueh-Chiang; Hurley, Thomas D.; DePaoli-Roach, Anna A.; Roach, Peter J.; Biochemistry and Molecular Biology, School of MedicineLafora disease (LD) is an autosomal recessive myoclonus epilepsy with onset in the teenage years leading to death within a decade of onset. LD is characterized by the overaccumulation of hyperphosphorylated, poorly branched, insoluble, glycogen-like polymers called Lafora bodies. The disease is caused by mutations in either EPM2A, encoding laforin, a dual specificity phosphatase that dephosphorylates glycogen, or EMP2B, encoding malin, an E3-ubiquitin ligase. While glycogen is a widely accepted laforin substrate, substrates for malin have been difficult to identify partly due to the lack of malin antibodies able to detect malin in vivo. Here we describe a mouse model in which the malin gene is modified at the C-terminus to contain the c-myc tag sequence, making an expression of malin-myc readily detectable. Mass spectrometry analyses of immunoprecipitates using c-myc tag antibodies demonstrate that malin interacts with laforin and several glycogen-metabolizing enzymes. To investigate the role of laforin in these interactions we analyzed two additional mouse models: malin-myc/laforin knockout and malin-myc/LaforinCS, where laforin was either absent or the catalytic Cys was genomically mutated to Ser, respectively. The interaction of malin with partner proteins requires laforin but is not dependent on its catalytic activity or the presence of glycogen. Overall, the results demonstrate that laforin and malin form a complex in vivo, which stabilizes malin and enhances interaction with partner proteins to facilitate normal glycogen metabolism. They also provide insights into the development of LD and the rescue of the disease by the catalytically inactive phosphatase.Item Novel method for detection of glycogen in cells(Oxford University Press, 2017-05-01) Skurat, Alexander V.; Segvich, Dyann M.; DePaoli-Roach, Anna A.; Roach, Peter J.; Biochemistry and Molecular Biology, School of MedicineGlycogen, a branched polymer of glucose, functions as an energy reserve in many living organisms. Abnormalities in glycogen metabolism, usually excessive accumulation, can be caused genetically, most often through mutation of the enzymes directly involved in synthesis and degradation of the polymer leading to a variety of glycogen storage diseases (GSDs). Microscopic visualization of glycogen deposits in cells and tissues is important for the study of normal glycogen metabolism as well as diagnosis of GSDs. Here, we describe a method for the detection of glycogen using a renewable, recombinant protein which contains the carbohydrate-binding module (CBM) from starch-binding domain containing protein 1 (Stbd1). We generated a fusion protein containing g lutathione S-transferase, a cM c eptitope and the tbd1 BM (GYSC) for use as a glycogen-binding probe, which can be detected with secondary antibodies against glutathione S-transferase or cMyc. By enzyme-linked immunosorbent assay, we demonstrate that GYSC binds glycogen and two other polymers of glucose, amylopectin and amylose. Immunofluorescence staining of cultured cells indicate a GYSC-specific signal that is co-localized with signals obtained with anti-glycogen or anti-glycogen synthase antibodies. GYSC-positive staining inside of lysosomes is observed in individual muscle fibers isolated from mice deficient in lysosomal enzyme acid alpha-glucosidase, a well-characterized model of GSD II (Pompe disease). Co-localized GYSC and glycogen signals are also found in muscle fibers isolated from mice deficient in malin, a model for Lafora disease. These data indicate that GYSC is a novel probe that can be used to study glycogen metabolism under normal and pathological conditions.