- Browse by Author
Browsing by Author "Sinha, Namita"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Comparing amyloid-β plaque burden with antemortem PiB PET in autosomal dominant and late-onset Alzheimer disease(Springer, 2021) Chen, Charles D.; Joseph-Mathurin, Nelly; Sinha, Namita; Zhou, Aihong; Li, Yan; Friedrichsen, Karl; McCullough, Austin; Franklin, Erin E.; Hornbeck, Russ; Gordon, Brian; Sharma, Vijay; Cruchaga, Carlos; Goate, Alison; Karch, Celeste; McDade, Eric; Xiong, Chengjie; Bateman, Randall J.; Ghetti, Bernardino; Ringman, John M.; Chhatwal, Jasmeer; Masters, Colin L.; McLean, Catriona; Lashley, Tammaryn; Su, Yi; Koeppe, Robert; Jack, Clifford; Klunk, William E.; Morris, John C.; Perrin, Richard J.; Cairns, Nigel J.; Benzinger, Tammie L.S.; Pathology and Laboratory Medicine, School of MedicinePittsburgh compound B (PiB) radiotracer for positron emission tomography (PET) imaging can bind to different types of amyloid-β plaques and blood vessels (cerebral amyloid angiopathy). However, the relative contributions of different plaque subtypes (diffuse versus cored/compact) to in vivo PiB PET signal on a region-by-region basis is incompletely understood. Of particular interest is whether the same staging schemes for summarizing amyloid-β burden are appropriate for both late-onset and autosomal dominant forms of Alzheimer disease (LOAD and ADAD). Here we compared antemortem PiB PET with follow-up postmortem estimation of amyloid-β burden using stereologic methods to estimate the relative area fraction of diffuse and cored/compact amyloid-β plaques across 16 brain regions in 15 individuals with ADAD and 14 individuals with LOAD. In ADAD, we found that PiB PET correlated with diffuse plaques in the frontal, parietal, temporal, and striatal regions commonly used to summarize amyloid-β burden in PiB PET, and correlated with both diffuse and cored/compact plaques in the occipital lobe and parahippocampal gyrus. In LOAD, we found that PiB PET correlated with both diffuse and cored/compact plaques in the anterior cingulate, frontal lobe (middle frontal gyrus), and parietal lobe, and showed additional correlations with diffuse plaque in the amygdala and occipital lobe, and with cored/compact plaque in the temporal lobe. Thus, commonly used PiB PET summary regions predominantly reflect diffuse plaque burden in ADAD and a mixture of diffuse and cored/compact plaque burden in LOAD. In direct comparisons of ADAD and LOAD, postmortem stereology identified much greater mean amyloid-β plaque burdens in ADAD versus LOAD across almost all brain regions studied. However, standard PiB PET did not recapitulate these stereologic findings, likely due to non-trivial amyloid-β plaque burdens in ADAD within the cerebellum and brainstem – commonly used reference regions in PiB PET. Our findings suggest that PiB PET summary regions correlate with amyloid-β plaque burden in both ADAD and LOAD; however, they might not be reliable in direct comparisons of regional amyloid-β plaque burden between the two forms of AD.