- Browse by Author
Browsing by Author "Sidhu, Amardeep Singh"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Adaptive Nonlinear Model-Based Fault Diagnosis of Li-ion Batteries(IEEE, 2015-02) Sidhu, Amardeep Singh; Izadian, Afshin; Anwar, Sohel; Department of Mechanical Engineering, School of EngineeringIn this paper, an adaptive fault diagnosis technique is used in Li-ion batteries. The diagnosis process consists of multiple nonlinear models representing signature faults, such as overcharge and overdischarge, causing significant model parameter variation. The impedance spectroscopy of a Li-ion LiFePO4 cell is used, along with the equivalent circuit methodology, to construct nonlinear battery signature-fault models. Extended Kalman filters are utilized to estimate the terminal voltage of each model and to generate residual signals. The residual signals are used in the multiple-model adaptive estimation technique to generate probabilities that determine the signature faults. It can be seen that, by using this method, signature faults can be detected accurately, thus providing an effective way of diagnosing Li-ion battery failure.Item Fault diagnosis of lithium ion battery using multiple model adaptive estimation(2013-12) Sidhu, Amardeep Singh; Anwar, Sohel; Izadian, Afshin; Xie, JianLithium ion (Li-ion) batteries have become integral parts of our lives; they are widely used in applications like handheld consumer products, automotive systems, and power tools among others. To extract maximum output from a Li-ion battery under optimal conditions it is imperative to have access to the state of the battery under every operating condition. Faults occurring in the battery when left unchecked can lead to irreversible, and under extreme conditions, catastrophic damage. In this thesis, an adaptive fault diagnosis technique is developed for Li-ion batteries. For the purpose of fault diagnosis the battery is modeled by using lumped electrical elements under the equivalent circuit paradigm. The model takes into account much of the electro-chemical phenomenon while keeping the computational effort at the minimum. The diagnosis process consists of multiple models representing the various conditions of the battery. A bank of observers is used to estimate the output of each model; the estimated output is compared with the measurement for generating residual signals. These residuals are then used in the multiple model adaptive estimation (MMAE) technique for generating probabilities and for detecting the signature faults. The effectiveness of the fault detection and identification process is also dependent on the model uncertainties caused by the battery modeling process. The diagnosis performance is compared for both the linear and nonlinear battery models. The non-linear battery model better captures the actual system dynamics and results in considerable improvement and hence robust battery fault diagnosis in real time. Furthermore, it is shown that the non-linear battery model enables precise battery condition monitoring in different degrees of over-discharge.