- Browse by Author
Browsing by Author "Si, Yubing"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Chemical Proteomics Reveals Soluble Epoxide Hydrolase as a Therapeutic Target for Ocular Neovascularization(ACS, 2018) Sulaiman, Rania S.; Park, Bomina; Sardar Pasha, Sheik Pran Babu; Si, Yubing; Kharwadkar, Rakshin; Mitter, Sayak K.; Lee, Bit; Sun, Wei; Qi, Xiaoping; Boulton, Michael E.; Meroueh, Samy; Fei, Xiang; Seo, Seung-Yong; Corson, Timothy W.; Ophthalmology, School of MedicineThe standard-of-care therapeutics for the treatment of ocular neovascular diseases like wet age-related macular degeneration (AMD) are biologics targeting vascular endothelial growth factor signaling. There are currently no FDA approved small molecules for treating these blinding eye diseases. Therefore, therapeutic agents with novel mechanisms are critical to complement or combine with existing approaches. Here, we identified soluble epoxide hydrolase (sEH), a key enzyme for epoxy fatty acid metabolism, as a target of an antiangiogenic homoisoflavonoid, SH-11037. SH-11037 inhibits sEH in vitro and in vivo and docks to the substrate binding cleft in the sEH hydrolase domain. sEH levels and activity are up-regulated in the eyes of a choroidal neovascularization (CNV) mouse model. sEH is overexpressed in human wet AMD eyes, suggesting that sEH is relevant to neovascularization. Known sEH inhibitors delivered intraocularly suppressed CNV. Thus, by dissecting a bioactive compound’s mechanism, we identified a new chemotype for sEH inhibition and characterized sEH as a target for blocking the CNV that underlies wet AMD.Item Chemical Space Overlap with Critical Protein–Protein Interface Residues in Commercial and Specialized Small-Molecule Libraries(Wiley, 2018-12-20) Si, Yubing; Xu, David; Bum-Erdene, Khuchtumur; Ghozayel, Mona K.; Yang, Baocheng; Clemons, Paul A.; Meroueh, Samy O.; Biochemistry and Molecular Biology, School of MedicineThere is growing interest in the use of structure-based virtual screening to identify small molecules that inhibit challenging protein–protein interactions (PPIs). In this study, we investigated how effectively chemical library members docked at the PPI interface mimic the position of critical side-chain residues known as “hot spots”. Three compound collections were considered, a commercially available screening collection (ChemDiv), a collection of diversity-oriented synthesis (DOS) compounds that contains natural-product-like small molecules, and a library constructed using established reactions (the “screenable chemical universe based on intuitive data organization”, SCUBIDOO). Three different tight PPIs for which hot-spot residues have been identified were selected for analysis: uPAR·uPA, TEAD4·Yap1, and CaVα·CaVβ. Analysis of library physicochemical properties was followed by docking to the PPI receptors. A pharmacophore method was used to measure overlap between small-molecule substituents and hot-spot side chains. Fragment-like conformationally restricted small molecules showed better hot-spot overlap for interfaces with well-defined pockets such as uPAR·uPA, whereas better overlap was observed for more complex DOS compounds in interfaces lacking a well-defined binding site such as TEAD4·Yap1. Virtual screening of conformationally restricted compounds targeting uPAR·uPA and TEAD4·Yap1 followed by experimental validation reinforce these findings, as the best hits were fragment-like and had few rotatable bonds for the former, while no hits were identified for the latter. Overall, such studies provide a framework for understanding PPIs in the context of additional chemical matter and new PPI definitions.Item A Computational Investigation of Small-Molecule Engagement of Hot Spots at Protein–Protein Interaction Interfaces(ACS, 2017-08) Xu, David; Bum-Erdene, Khuchtumur; Si, Yubing; Zhou, Donghui; Liu, Degang; Ghozayel, Mona; Meroueh, Samy; Biochemistry and Molecular Biology, School of MedicineThe binding affinity of a protein–protein interaction is concentrated at amino acids known as hot spots. It has been suggested that small molecules disrupt protein–protein interactions by either (i) engaging receptor protein hot spots or (ii) mimicking hot spots of the protein ligand. Yet, no systematic studies have been done to explore how effectively existing small-molecule protein–protein interaction inhibitors mimic or engage hot spots at protein interfaces. Here, we employ explicit-solvent molecular dynamics simulations and end-point MM-GBSA free energy calculations to explore this question. We select 36 compounds for which high-quality binding affinity and cocrystal structures are available. Five complexes that belong to three classes of protein–protein interactions (primary, secondary, and tertiary) were considered, namely, BRD4•H4, XIAP•Smac, MDM2•p53, Bcl-xL•Bak, and IL-2•IL-2Rα. Computational alanine scanning using MM-GBSA identified hot-spot residues at the interface of these protein interactions. Decomposition energies compared the interaction of small molecules with individual receptor hot spots to those of the native protein ligand. Pharmacophore analysis was used to investigate how effectively small molecules mimic the position of hot spots of the protein ligand. Finally, we study whether small molecules mimic the effects of the native protein ligand on the receptor dynamics. Our results show that, in general, existing small-molecule inhibitors of protein–protein interactions do not optimally mimic protein–ligand hot spots, nor do they effectively engage protein receptor hot spots. The more effective use of hot spots in future drug design efforts may result in smaller compounds with higher ligand efficiencies that may lead to greater success in clinical trials.Item Mimicking Intermolecular Interactions of Tight Protein–Protein Complexes for Small-Molecule Antagonists(Wiley, 2017-11) Xu, David; Bum-Erdene, Khuchtumur; Si, Yubing; Zhou, Donghui; Ghozayel, Mona; Meroueh, Samy; Biochemistry and Molecular Biology, School of MedicineTight protein–protein interactions (Kd<100 nm) that occur over a large binding interface (>1000 Å2) are highly challenging to disrupt with small molecules. Historically, the design of small molecules to inhibit protein–protein interactions has focused on mimicking the position of interface protein ligand side chains. Here, we explore mimicry of the pairwise intermolecular interactions of the native protein ligand with residues of the protein receptor to enrich commercial libraries for small-molecule inhibitors of tight protein–protein interactions. We use the high-affinity interaction (Kd=1 nm) between the urokinase receptor (uPAR) and its ligand urokinase (uPA) to test our methods. We introduce three methods for rank-ordering small molecules docked to uPAR: 1) a new fingerprint approach that represents uPA′s pairwise interaction energies with uPAR residues; 2) a pharmacophore approach to identify small molecules that mimic the position of uPA interface residues; and 3) a combined fingerprint and pharmacophore approach. Our work led to small molecules with novel chemotypes that inhibited a tight uPAR⋅uPA protein–protein interaction with single-digit micromolar IC50 values. We also report the extensive work that identified several of the hits as either lacking stability, thiol reactive, or redox active. This work suggests that mimicking the binding profile of the native ligand and the position of interface residues can be an effective strategy to enrich commercial libraries for small-molecule inhibitors of tight protein–protein interactions.Item An Organic–Inorganic Hybrid Cathode Based on S–Se Dynamic Covalent Bonds(Wiley, 2020-02) Zhao, Jiawei; Si, Yubing; Han, Zixiao; Li, Junjie; Guo, Wei; Fu, Yongzhu; Medicine, School of MedicineA diphenyl trisulfide–selenium nanowire (DPTS‐Se) organic–inorganic hybrid cathode material is presented for rechargeable lithium batteries. During discharge, three voltage plateaus associated with three lithiation processes are observed. During recharge, the combination of the radicals formed upon delithiation leads to several new phenyl sulfoselenide compounds which are confirmed by HPLC‐QTof‐MS. The hybrid cathode exhibits superior cycling stability over pristine Se or DPTS as cathode alone. The first discharge shows a capacity of 96.5 % of the theoretical specific capacity and the cell retains 69.2 % of the initial capacity over 250 cycles. The hybrid cathode also shows a high Coulombic efficiency of over 99 % after 250 cycles. This study demonstrates that the combination of organic polysulfide and selenium can not only improve the utilization of active materials but also enhance the cycling performance.Item Small-molecule CaVα1⋅CaVβ antagonist suppresses neuronal voltage-gated calcium-channel trafficking(National Academy of Sciences, 2018-11-06) Chen, Xingjuan; Liu, Degang; Zhou, Donghui; Si, Yubing; Xu, David; Stamatkin, Christopher W.; Ghozayel, Mona K.; Ripsch, Matthew S.; Obukhov, Alexander G.; White, Fletcher A.; Meroueh, Samy O.; Cellular and Integrative Physiology, School of MedicineExtracellular calcium flow through neuronal voltage-gated CaV2.2 calcium channels converts action potential-encoded information to the release of pronociceptive neurotransmitters in the dorsal horn of the spinal cord, culminating in excitation of the postsynaptic central nociceptive neurons. The CaV2.2 channel is composed of a pore-forming α1 subunit (CaVα1) that is engaged in protein-protein interactions with auxiliary α2/δ and β subunits. The high-affinity CaV2.2α1⋅CaVβ3 protein-protein interaction is essential for proper trafficking of CaV2.2 channels to the plasma membrane. Here, structure-based computational screening led to small molecules that disrupt the CaV2.2α1⋅CaVβ3 protein-protein interaction. The binding mode of these compounds reveals that three substituents closely mimic the side chains of hot-spot residues located on the α-helix of CaV2.2α1 Site-directed mutagenesis confirmed the critical nature of a salt-bridge interaction between the compounds and CaVβ3 Arg-307. In cells, compounds decreased trafficking of CaV2.2 channels to the plasma membrane and modulated the functions of the channel. In a rodent neuropathic pain model, the compounds suppressed pain responses. Small-molecule α-helical mimetics targeting ion channel protein-protein interactions may represent a strategy for developing nonopioid analgesia and for treatment of other neurological disorders associated with calcium-channel trafficking.Item Small-Molecule Covalent Modification of Conserved Cysteine Leads to Allosteric Inhibition of the TEAD⋅Yap Protein-Protein Interaction(Elsevier, 2019) Bum-Erdene, Khuchtumur; Zhou, Donghui; Gonzalez-Gutierrez, Giovanni; Ghozayel, Mona K.; Si, Yubing; Xu, David; Shannon, Harlan E.; Bailey, Barbara J.; Corson, Timothy W.; Pollok, Karen E.; Wells, Clark D.; Meroueh, Samy O.; Biochemistry and Molecular Biology, School of MedicineThe Hippo pathway coordinates extracellular signals onto the control of tissue homeostasis and organ size. Hippo signaling primarily regulates the ability of Yap1 to bind and co-activate TEA domain (TEAD) transcription factors. Yap1 tightly binds to TEAD4 via a large flat interface, making the development of small-molecule orthosteric inhibitors highly challenging. Here, we report small-molecule TEAD⋅Yap inhibitors that rapidly and selectively form a covalent bond with a conserved cysteine located within the unique deep hydrophobic palmitate-binding pocket of TEADs. Inhibition of TEAD4 binding to Yap1 by these compounds was irreversible and occurred on a longer time scale. In mammalian cells, the compounds formed a covalent complex with TEAD4, inhibited its binding to Yap1, blocked its transcriptional activity, and suppressed expression of connective tissue growth factor. The compounds inhibited cell viability of patient-derived glioblastoma spheroids, making them suitable as chemical probes to explore Hippo signaling in cancer.