ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Shui Feng, Rachel"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Characterization of a novel RNAi yeast insecticide that silences mosquito 5-HT1 receptor genes
    (Springer Nature, 2023-12-15) Mysore, Keshava; Njoroge, Teresia M.; Stewart, Akilah T. M.; Winter, Nikhella; Hamid‑Adiamoh, Majidah; Sun, Longhua; Shui Feng, Rachel; James, Lester D.; Mohammed, Azad; Severson, David W.; Duman‑Scheel, Molly; Medical and Molecular Genetics, School of Medicine
    G protein-coupled receptors (GPCRs), which regulate numerous intracellular signaling cascades that mediate many essential physiological processes, are attractive yet underexploited insecticide targets. RNA interference (RNAi) technology could facilitate the custom design of environmentally safe pesticides that target GPCRs in select target pests yet are not toxic to non-target species. This study investigates the hypothesis that an RNAi yeast insecticide designed to silence mosquito serotonin receptor 1 (5-HTR1) genes can kill mosquitoes without harming non-target arthropods. 5-HTR.426, a Saccharomyces cerevisiae strain that expresses an shRNA targeting a site specifically conserved in mosquito 5-HTR1 genes, was generated. The yeast can be heat-inactivated and delivered to mosquito larvae as ready-to-use tablets or to adult mosquitoes using attractive targeted sugar baits (ATSBs). The results of laboratory and outdoor semi-field trials demonstrated that consumption of 5-HTR.426 yeast results in highly significant mortality rates in Aedes, Anopheles, and Culex mosquito larvae and adults. Yeast consumption resulted in significant 5-HTR1 silencing and severe neural defects in the mosquito brain but was not found to be toxic to non-target arthropods. These results indicate that RNAi insecticide technology can facilitate selective targeting of GPCRs in intended pests without impacting GPCR activity in non-targeted organisms. In future studies, scaled production of yeast expressing the 5-HTR.426 RNAi insecticide could facilitate field trials to further evaluate this promising new mosquito control intervention.
  • Loading...
    Thumbnail Image
    Item
    Demonstration of RNAi Yeast Insecticide Activity in Semi-Field Larvicide and Attractive Targeted Sugar Bait Trials Conducted on Aedes and Culex Mosquitoes
    (MDPI, 2023-12-15) Stewart, Akilah T. M.; Mysore, Keshava; Njoroge, Teresia M.; Winter, Nikhella; Shui Feng, Rachel; Singh, Satish; James, Lester D.; Singkhaimuk, Preeraya; Sun, Longhua; Mohammed, Azad; Oxley, James D.; Duckham, Craig; Ponlawat, Alongkot; Severson, David W.; Duman-Scheel, Molly; Medical and Molecular Genetics, School of Medicine
    Eco-friendly new mosquito control innovations are critical for the ongoing success of global mosquito control programs. In this study, Sh.463_56.10R, a robust RNA interference (RNAi) yeast insecticide strain that is suitable for scaled fermentation, was evaluated under semi-field conditions. Inactivated and dried Sh.463_56.10R yeast induced significant mortality of field strain Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus larvae in semi-field larvicide trials conducted outdoors in St. Augustine, Trinidad, where 100% of the larvae were dead within 24 h. The yeast was also stably suspended in commercial bait and deployed as an active ingredient in miniature attractive targeted sugar bait (ATSB) station sachets. The yeast ATSB induced high levels of Aedes and Culex mosquito morbidity in semi-field trials conducted in Trinidad, West Indies, as well as in Bangkok, Thailand, in which the consumption of the yeast resulted in adult female mosquito death within 48 h, faster than what was observed in laboratory trials. These findings support the pursuit of large-scale field trials to further evaluate the Sh.463_56.10R insecticide, a member of a promising new class of species-specific RNAi insecticides that could help combat insecticide resistance and support effective mosquito control programs worldwide.
  • Loading...
    Thumbnail Image
    Item
    Development of a controlled-release mosquito RNAi yeast larvicide suitable for the sustained control of large water storage containers
    (Springer Nature, 2024-12-04) Mysore, Keshava; Oxley, James D.; Duckham, Craig; Castilla-Gutierrez, Clarissa; Stewart, Akilah T. M.; Winter, Nikhella; Shui Feng, Rachel; Singh, Satish; James, Lester D.; Mohammed, Azad; Severson, David W.; Duman-Scheel, Molly; Medical and Molecular Genetics, School of Medicine
    Large household water storage containers are among the most productive habitats for Aedes aegypti (Linnaeus, 1762), the primary mosquito vector for dengue and other arboviral pathogens. Increasing concerns for insecticide resistance and larvicide safety are limiting the successful treatment of large household water storage containers, which are among the most productive habitats for Aedes juveniles. The recent development of species-specific RNAi-based yeast larvicides could help overcome these problems, particularly if shelf stable ready-to-use formulations with significant residual activity in water can be developed. Here we examine the hypothesis that development of a shelf-stable controlled-release RNAi yeast formulation can facilitate lasting control of A. aegypti juveniles in large water storage containers. In this study, a dried inactivated yeast was incorporated into a biodegradable matrix containing a mixture of polylactic acid, a preservative, and UV protectants. The formulation was prepared using food-grade level components to prevent toxicity to humans or other organisms. Both floating and sinking versions of the tablets were prepared for treatment of various sized water containers, including household water storage tank-sized containers. The tablets passed accelerated storage tests of shelf life stability and demonstrated up to six months residual activity in water. The yeast performed well in both small and large containers, including water barrels containing 20-1000 larvae each, and in outdoor barrel trials. Future studies will include the evaluation of the yeast larvicide in larger operational field trials that will further assess the potential for incorporating this new technology into integrated mosquito control programs worldwide.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University