ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Shivakumar, Manu"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A genetically informed brain atlas for enhancing brain imaging genomics
    (Springer Nature, 2025-04-14) Bao, Jingxuan; Wen, Junhao; Chang, Changgee; Mu, Shizhuo; Chen, Jiong; Shivakumar, Manu; Cui, Yuhan; Erus, Guray; Yang, Zhijian; Yang, Shu; Wen, Zixuan; The Alzheimer’s Disease Neuroimaging Initiative; Zhao, Yize; Kim, Dokyoon; Duong-Tran, Duy; Saykin, Andrew J.; Zhao, Bingxin; Davatzikos, Christos; Long, Qi; Shen, Li; Biostatistics and Health Data Science, Richard M. Fairbanks School of Public Health
    Brain imaging genomics has manifested considerable potential in illuminating the genetic determinants of human brain structure and function. This has propelled us to develop the GIANT (Genetically Informed brAiN aTlas) that accounts for genetic and neuroanatomical variations simultaneously. Integrating voxel-wise heritability and spatial proximity, GIANT clusters brain voxels into genetically informed regions, while retaining fundamental anatomical knowledge. Compared to conventional (non-genetics) brain atlases, GIANT exhibits smaller intra-region variations and larger inter-region variations in terms of voxel-wise heritability. As a result, GIANT yields increased regional SNP heritability, enhanced polygenicity, and its polygenic risk score explains more brain volumetric variation than traditional neuroanatomical brain atlases. We provide extensive validation to GIANT and demonstrate its neuroanatomical validity, confirming its generalizability across populations with diverse genetic ancestries and various brain conditions. Furthermore, we present a comprehensive genetic architecture of the GIANT regions, covering their functional annotation at the molecular levels, their associations with other complex traits/diseases, and the genetic and phenotypic correlations among GIANT-defined imaging endophenotypes. In summary, GIANT constitutes a brain atlas that captures the complexity of genetic and neuroanatomical heterogeneity, thereby enhancing the discovery power and applicability of imaging genomics investigations in biomedical science.
  • Loading...
    Thumbnail Image
    Item
    Addressing overfitting bias due to sample overlap in polygenic risk scoring
    (Wiley, 2025) Jeong, Seokho; Shivakumar, Manu; Jung, Sang-Hyuk; Won, Hong-Hee; Nho, Kwangsik; Huang, Heng; Davatzikos, Christos; Saykin, Andrew J.; Thompson, Paul M.; Shen, Li; Kim, Young Jin; Kim, Bong-Jo; Lee, Seunggeun; Kim, Dokyoon; Radiology and Imaging Sciences, School of Medicine
    Introduction: Numerous studies on Alzheimer's disease polygenic risk scores (PRSs) overlook sample overlap between International Genomics of Alzheimer's Project (IGAP) and target datasets like Alzheimer's Disease Neuroimaging Initiative (ADNI). Methods: To address this, we developed overlap-adjusted PRS (OA PRS) and tested it on simulated data to assess biases from different scenarios by varying training, testing, and overlap proportions. OA PRS was used to adjust for sample bias in simulations; then, we applied OA PRS to IGAP and ADNI datasets and validated through visual diagnosis. Results: OA PRS effectively adjusted for sample overlap in all simulation scenarios, as well as for IGAP and ADNI. The original IGAP PRS showed an inflated area under the receiver operating characteristic (AUROC: 0.915) on overlapping samples. OA PRS reduced the AUROC to 0.726, closely aligning with the AUROC of non-overlapping samples (0.712). Further, visual diagnostics confirmed the effectiveness of our adjustments. Discussion: With OA PRS, we were able to adjust the IGAP summary-based PRS for the overlapped ADNI samples, allowing the dataset to be fully used without the risk of overfitting. Highlights: Sample overlap between large Alzheimer's disease (AD) cohorts poses overfitting bias when using AD polygenic risk scores (PRSs). This study highlighted the effectiveness of overlap-adjusted PRS (OA -PRS) in mitigating overfitting and improving the accuracy of PRS estimations. New PRSs based on adjusted effect sizes showed increased power in association with clinical features.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University