- Browse by Author
Browsing by Author "Shiue, Kevin"
Now showing 1 - 10 of 21
Results Per Page
Sort Options
Item Analysis of Virtual Versus In-Person Prospective Peer Review Workflow in a Multisite Academic Radiation Oncology Department(Elsevier, 2021-11) McClelland, Shearwood III; Amy Achiko, Flora; Bartlett, Gregory K.; Watson, Gordon A.; Holmes, Jordan A.; Rhome, Ryan M.; DesRosiers, Colleen M.; Hutchins, Karen M.; Shiue, Kevin; Agrawal, Namita; Radiation Oncology, School of MedicinePurpose In radiation oncology, peer review is a process where subjective treatment planning decisions are assessed by those independent of the prescribing physician. Before March 2020, all peer review sessions occurred in person; however due to the COVID-19 pandemic, the peer-review workflow was transitioned from in-person to virtual. We sought to assess any differences between virtual versus in-person prospective peer review. Methods and Materials Patients scheduled to receive nonemergent nonprocedural radiation therapy (RT) were presented daily at prospective peer-review before the start of RT administration. Planning software was used, with critical evaluation of several variables including treatment intent, contour definition, treatment target coverage, and risk to critical structures. A deviation was defined as any suggested plan revision. Results In the study, 274 treatment plans evaluated in-person in 2017 to 2018 were compared with 195 plans evaluated virtually in 2021. There were significant differences in palliative intent (36% vs 22%; P = .002), but not in total time between simulation and the start of treatment (9.2 vs 10.0 days; P = .10). Overall deviations (8.0% in-person vs 2.6% virtual; P = .015) were significantly reduced in virtual peer review. Conclusions Prospective daily peer review of radiation oncology treatment plans can be performed virtually with similar timeliness of patient care compared with in-person peer review. A decrease in deviation rate in the virtual peer review setting will need to be further investigated to determine whether virtual workflow can be considered a standard of care.Item Autologous stem cell transplantation in adults with atypical teratoid rhabdoid tumor: a case report and review(Taylor & Francis, 2024) Griffith-Linsley, Jackson; Bell, William Robert; Cohen-Gadol, Aaron; Donegan, Diane; Richardson, Angela; Robertson, Michael; Shiue, Kevin; Nevel, Kathryn; Pathology and Laboratory Medicine, School of MedicineAim: Atypical teratoid rhabdoid tumor (ATRT) is a rare and highly aggressive primary CNS neoplasm, predominantly observed in children. The use of autologous stem cell transplantation (ASCT) in pediatric ATRT has shown promise; however, its utility in adult ATRT remains unclear. Patients & methods: This study presents the case of an adult patient with ATRT who is in remission after ASCT and reviews the literature on ASCT in adults with ATRT. Four cases of ATRT in adults who underwent ASCT were identified, with pertinent data summarized. Results: All five patients survived longer than the historical average survival rate, four of whom had no clinical or radiographic evidence of disease at the final follow-up. Conclusion: Based on limited data, there may be a role for ASCT in the treatment of adults with ATRT.Item Baseline Karnofsky performance status is independently predictive of death within 30 days of intracranial radiation therapy completion for metastatic disease(Elsevier, 2020) McClelland, Shearwood, III.; Agrawal, Namita; Elbanna, May F.; Shiue, Kevin; Bartlett, Gregory K.; Lautenschlaeger, Tim; Zellars, Richard C.; Watson, Gordon A.; Ellsworth, Susannah G.; Radiation Oncology, School of MedicineIntroduction: For patients with brain metastases, palliative radiation therapy (RT) has long been a standard of care for improving quality of life and optimizing intracranial disease control. The duration of time between completion of palliative RT and patient death has rarely been evaluated. Methods: A compilation of two prospective institutional databases encompassing April 2015 through December 2018 was used to identify patients who received palliative intracranial radiation therapy. A multivariate logistic regression model characterized patients adjusting for age, sex, admission status (inpatient versus outpatient), Karnofsky Performance Status (KPS), and radiation therapy indication. Results: 136 consecutive patients received intracranial palliative radiation therapy. Patients with baseline KPS <70 (OR = 2.2; 95%CI = 1.6-3.1; p < 0.0001) were significantly more likely to die within 30 days of treatment. Intracranial palliative radiation therapy was most commonly delivered to provide local control (66% of patients) or alleviate neurologic symptoms (32% of patients), and was most commonly delivered via whole brain radiation therapy in 10 fractions to 30 Gy (38% of patients). Of the 42 patients who died within 30 days of RT, 31 (74%) received at least 10 fractions. Conclusions: Our findings indicate that baseline KPS <70 is independently predictive of death within 30 days of palliative intracranial RT, and that a large majority of patients who died within 30 days received at least 10 fractions. These results indicate that for poor performance status patients requiring palliative intracranial radiation, hypofractionated RT courses should be strongly considered.Item Commentary: Fractionated Proton Beam Radiation Therapy and Hearing Preservation for Vestibular Schwannoma: Preliminary Analysis of a Prospective Phase 2 Clinical Trial(Wolters Kluwer, 2022-07) McClelland, Shearwood; Combs, Stephanie E.; Halasz, Lia M.; Lo, Simon S.; Shiue, Kevin; Radiation Oncology, School of MedicineItem Dosimetric Impact of Source Displacement in GammaTile Surgically Targeted Radiation Therapy for Gliomas(Springer Nature, 2023-05-02) Ng, Sook Kien; Yue, Yong; Shiue, Kevin; Shah, Mitesh V.; Le, Yi; Radiation Oncology, School of MedicineBackground: This study aims to evaluate dosimetric changes that happened during the first month after GammaTile surgically targeted radiation therapy (STaRT) for gliomas due to Cesium-131 (Cs-131) seed displacement caused by cavity shrinkage in brain brachytherapy. Methodology: In this study, 10 glioma patients had 4-11 GammaTiles placed along the resection bed after maximal safe resection during craniotomy. Each GammaTile is composed of four Cs-131 seeds embedded in a biodegradable collagen sponge to minimize seed movement and maintain seed-to-cavity surface distance. The Cs-131 seed positions were identified using VariSeed on day one. On day 30, post-implant computed tomography (CT) images and dosimetry parameters were calculated. An iterative closest point (ICP) algorithm was used to compute rigid transformation between the day one and day 30 seed clouds. The seed displacement was calculated after registration. The volume receiving 100% of the prescription dose (V100), the dose received by 90% of the planning target volume (D90_PTV), the planning target volume receiving 100% of the prescription dose (V100_PTV), and the dose to organs at risk (OARs) were calculated for both CT images to determine the dosimetric changes from any seed displacement. Results: The mean seed displacement of 1.8 ± 1.0 mm for all patients was observed between day one and day 30. The maximum seed displacement for each patient ranged from 2.3 mm to 7.3 mm. The mean V100 difference between day one and day 30 was 2.5 cc (range = 0.5-6.5 cc). The mean D90_PTVs were 95.5% (range = 69.0%-131.0%) and 98.1% (range = 19.9%-149.0%) on day one and day 30, respectively. The mean V100_PTVs were 88.4% (range = 81.3%-99.1%) and 87.9% (range = 47.0%-99.7%) on day one and day 30, respectively. On day one, the brainstem dose was 63.5 Gy for one case and 28.1 Gy for another case; while on day 30, the brainstem dose was 55.8 Gy and 20.6 Gy for the same patients, contributing to 7.7 Gy (12.8%) and 7.5 Gy (12.5%) dose reductions to brainstem for these patients, respectively. Only two patients received a dose to the optic nerves (34.1 Gy and 5.2 Gy). There were small changes (1.8 Gy and 0.5 Gy, respectively) in the dose to optic nerves when comparing the dose calculated on day one and the dose calculated on day 30 CT images. The same two patients received 30.4 Gy and 6.8 Gy to the chiasm, respectively. Small changes in the dose to the chiasm (≤1.1 Gy) were noted between day one and day 30. Conclusions: A maximum seed displacement of up to 7.3 mm and a mean seed displacement of 1.8 mm caused by cavity shrinkage were observed during the first month after GammaTile STaRT for gliomas. There were noticeable changes in dosimetry parameters. Changes in the doses to OARs, particularly the brainstem, were large (up to 12.8% of the prescription dose). These changes in dosimetry should be considered when evaluating treatment outcomes and planning future GammaTile treatments.Item FCB-CHOPS: An Evolution of a Commonly Used Acronym for Evaluating Radiation Treatment Plans(Elsevier, 2024-11-26) Weisman, Michael; McClelland, Shearwood, III; Agrawal, Namita; Jimenez, Rachel B.; Yechieli, Raphael; Fields, Emma; Ishaq, Omar; Holmes, Jordan A.; Golden, Daniel W.; Mak, Raymond; Shiue, Kevin; Radiation Oncology, School of MedicineChecklists have been used across many fields as a systematic framework to reduce human error and improve safety. In radiation oncology, the CB-CHOP acronym was previously developed as a tool to aid physicians in assessing the quality of radiation treatment plans for approval. This manuscript updates the acronym for the modern era with the addition of F and S to create FCB-CHOPS: fusion, contours, beams, coverage, heterogeneity, organs at risk, prescription, and dose summation. These 2 additions reflect the evolution and importance of image fusion to aid in the delineation of targets and organs at risk and dose summation to reflect the increased incidence of reirradiation and the need to consider prior treatment courses in the final plan evaluation. Utilization of this and similar checklists is critical in maintaining high-quality and safe radiation oncology treatments.Item GammaTile for Gliomas: A Single-Center Case Series(Springer Nature, 2021-11) Budnick, Hailey C.; Richardson, Angela M.; Shiue, Kevin; Watson, Gordon; Ng, Sook K.; Le, Yi; Shah, Mitesh V.; Radiation Oncology, School of MedicineGammaTile® (GT Medical Technologies, Tempe, Arizona) is a surgically targeted radiation source, approved by FDA for brachytherapy in primary and secondary brain neoplasms. Each GammaTile is composed of a collagen sponge with four seeds of cesium 131 and is particularly useful in recurrent tumors. We report our early experience in seven patients with recurrent gliomas to assess this type of brachytherapy with particular attention to ease of use, complication, and surgical planning. This study represents a retrospective chart review of surgical use and early clinical outcomes of GammaTile in recurrent gliomas. The number of tiles was planned using pre-operative imaging and dosimetry was planned based on post-operative imaging. Patients were followed during their hospital stay and were followed up after discharge. Parameters such as case length, resection extent, complication, ICU length of stay (LOS), hospital LOS, pre-operative Glasgow Coma Scale (GCS), immediate post-operative GCS, post-operative imaging findings, recurrence at follow-up, length of follow-up, and dosimetry were collected in a retrospective manner. Seven patients were identified that met the inclusion criteria. Two patients were diagnosed with recurrent glioblastoma multiforme (GBM), one lower-grade glioma that recurred as a GBM, one GBM that recurred as a gliosarcoma, and two recurrent oligodendrogliomas. We found that operation time, ICU LOS, hospital LOS, pre- and post-operative GCS, and post-operative complications were within the expected ranges for tumor resection patients. Further, dosimetry data suggests that six out of seven patients received adequate radiation coverage, with the seventh having implantation limitations due to nearby organs at risk. We report no postoperative complications that can be attributed to the GammaTiles themselves. In our cohort, we report seven cases where GammaTiles were implanted in recurrent gliomas. No implant-related post-operative complications were identified. This early data suggests that GammaTile can be a safe form of brachytherapy in recurrent gliomas.Item Genomic analysis of human brain metastases treated with stereotactic radiosurgery reveals unique signature based on treatment failure(Elsevier, 2024-03-27) Shireman, Jack M.; White, Quinn; Ni, Zijian; Mohanty, Chitrasen; Cai, Yujia; Zhao, Lei; Agrawal, Namita; Gonugunta, Nikita; Wang, Xiaohu; Mccarthy, Liam; Kasulabada, Varshitha; Pattnaik, Akshita; Ahmed, Atique U.; Miller, James; Kulwin, Charles; Cohen-Gadol, Aaron; Payner, Troy; Lin, Chih-Ta; Savage, Jesse J.; Lane, Brandon; Shiue, Kevin; Kamer, Aaron; Shah, Mitesh; Iyer, Gopal; Watson, Gordon; Kendziorski, Christina; Dey, Mahua; Radiation Oncology, School of MedicineStereotactic radiosurgery (SRS) has been shown to be efficacious for the treatment of limited brain metastasis (BM); however, the effects of SRS on human brain metastases have yet to be studied. We performed genomic analysis on resected brain metastases from patients whose resected lesion was previously treated with SRS. Our analyses demonstrated for the first time that patients possess a distinct genomic signature based on type of treatment failure including local failure, leptomeningeal spread, and radio-necrosis. Examination of the center and peripheral edge of the tumors treated with SRS indicated differential DNA damage distribution and an enrichment for tumor suppressor mutations and DNA damage repair pathways along the peripheral edge. Furthermore, the two clinical modalities used to deliver SRS, LINAC and GK, demonstrated differential effects on the tumor landscape even between controlled primary sites. Our study provides, in human, biological evidence of differential effects of SRS across BM's.Item Genomic Analysis of Human Brain Metastases Treated with Stereotactic Radiosurgery Under the Phase-II Clinical Trial (NCT03398694) Reveals DNA Damage Repair at the Peripheral Tumor Edge(medRxiv, 2023-04-24) Shireman, Jack M.; White, Quinn; Agrawal, Namita; Ni, Zijian; Chen, Grace; Zhao, Lei; Gonugunta, Nikita; Wang, Xiaohu; Mccarthy, Liam; Kasulabada, Varshitha; Pattnaik, Akshita; Ahmed, Atique U.; Miller, James; Kulwin, Charles; Cohen-Gadol, Aaron; Payner, Troy; Lin, Chih-Ta; Savage, Jesse J.; Lane, Brandon; Shiue, Kevin; Kamer, Aaron; Shah, Mitesh; Iyer, Gopal; Watson, Gordon; Kendziorski, Christina; Dey, Mahua; Radiation Oncology, School of MedicineStereotactic Radiosurgery (SRS) is one of the leading treatment modalities for oligo brain metastasis (BM), however no comprehensive genomic data assessing the effect of radiation on BM in humans exist. Leveraging a unique opportunity, as part of the clinical trial (NCT03398694), we collected post-SRS, delivered via Gamma-knife or LINAC, tumor samples from core and peripheral-edges of the resected tumor to characterize the genomic effects of overall SRS as well as the SRS delivery modality. Using these rare patient samples, we show that SRS results in significant genomic changes at DNA and RNA levels throughout the tumor. Mutations and expression profiles of peripheral tumor samples indicated interaction with surrounding brain tissue as well as elevated DNA damage repair. Central samples show GSEA enrichment for cellular apoptosis while peripheral samples carried an increase in tumor suppressor mutations. There are significant differences in the transcriptomic profile at the periphery between Gamma-knife vs LINAC.Item Histology, Tumor Volume, and Radiation Dose Predict Outcomes in NSCLC Patients After Stereotactic Ablative Radiotherapy(Elsevier, 2018) Shiue, Kevin; Cerra-Franco, Alberto; Shapiro, Ronald; Estabrook, Neil; Mannina, Edward M.; Deig, Christopher R.; Althouse, Sandra; Liu, Sheng; Wan, Jun; Zang, Yong; Agrawal, Namita; Ioannides, Pericles; Liu, Yongmei; Zhang, Chen; DesRosiers, Colleen; Bartlett, Greg; Ewing, Marvene; Langer, Mark P.; Watson, Gordon; Zellars, Richard; Kong, Feng-Ming; Lautenschlaeger, Tim; Radiation Oncology, School of MedicineIntroduction It remains unclear if histology should be independently considered when choosing stereotactic ablative body radiotherapy dose prescriptions for NSCLC. Methods The study population included 508 patients with 561 lesions between 2000 and 2016, of which 442 patients with 482 lesions had complete dosimetric information. Eligible patients had histologically or clinically diagnosed early-stage NSCLC and were treated with 3 to 5 fractions. The primary endpoint was in-field tumor control censored by either death or progression. Involved lobe control was also assessed. Results At 6.7 years median follow-up, 3-year in-field control, involved lobe control, overall survival, and progression-free survival rates were 88.1%, 80.0%, 49.4%, and 37.2%, respectively. Gross tumor volume (GTV) (hazard ratio [HR] = 1.01 per mL, p = 0.0044) and histology (p = 0.0225) were independently associated with involved lobe failure. GTV (HR = 1.013, p = 0.001) and GTV dose (cutoff of 110 Gy, biologically effective dose with α/β = 10 [BED10], HR = 2.380, p = 0.0084) were independently associated with in-field failure. For squamous cell carcinomas, lower prescription doses were associated with worse in-field control (12 Gy × 4 or 10 Gy × 5 versus 18 Gy or 20 Gy × 3: HR = 3.530, p = 0.0447, confirmed by propensity score matching) and was independent of GTV (HR = 1.014 per mL, 95% confidence interval: 1.005–1.022, p = 0.0012). For adenocarcinomas, there were no differences in in-field control observed using the above dose groupings (p = 0.12 and p = 0.31, respectively). Conclusions In the absence of level I data, GTV and histology should be considered to personalize radiation dose for stereotactic ablative body radiotherapy. We suggest lower prescription doses (i.e., 12 Gy × 4 or 10 G × 5) should be avoided for squamous cell carcinomas if normal tissue tolerances are met.
- «
- 1 (current)
- 2
- 3
- »