ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Shim, Joon W."

Now showing 1 - 8 of 8
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Excess HB-EGF, which promotes VEGF signaling, leads to hydrocephalus
    (Nature Publishing Group, 2016-05-31) Shim, Joon W.; Sandlund, Johanna; Hameed, Mustafa Q.; Blazer-Yost, Bonnie L.; Zhou, Feng C.; Klagsbrun, Michael; Madsen, Joseph R.; Department of Anatomy & Cell Biology, IU School of Medicine
    Heparin binding epidermal growth factor-like growth factor (HB-EGF) is an angiogenic factor mediating radial migration of the developing forebrain, while vascular endothelial growth factor (VEGF) is known to influence rostral migratory stream in rodents. Cell migratory defects have been identified in animal models of hydrocephalus; however, the relationship between HB-EGF and hydrocephalus is unclear. We show that mice overexpressing human HB-EGF with β-galactosidase reporter exhibit an elevated VEGF, localization of β-galactosidase outside the subventricular zone (SVZ), subarachnoid hemorrhage, and ventriculomegaly. In Wistar polycystic kidney rats with hydrocephalus, alteration of migratory trajectory is detected. Furthermore, VEGF infusions into the rats result in ventriculomegaly with an increase of SVZ neuroblast in rostral migratory stream, whereas VEGF ligand inhibition prevents it. Our results support the idea that excess HB-EGF leads to a significant elevation of VEGF and ventricular dilatation. These data suggest a potential pathophysiological mechanism that elevated HB-EGF can elicit VEGF induction and hydrocephalus.
  • Loading...
    Thumbnail Image
    Item
    Hydrocephalus in a rat model of Meckel Gruber syndrome with a TMEM67 mutation
    (Springer Nature, 2019-01-31) Shim, Joon W.; Territo, Paul R.; Simpson, Stefanie; Watson, John C.; Jiang, Lei; Riley, Amanda A.; McCarthy, Brian; Persohn, Scott; Fulkerson, Daniel; Blazer-Yost, Bonnie L.; Biology, School of Science
    Transmembrane protein 67 (TMEM67) is mutated in Meckel Gruber Syndrome type 3 (MKS3) resulting in a pleiotropic phenotype with hydrocephalus and renal cystic disease in both humans and rodent models. The precise pathogenic mechanisms remain undetermined. Herein it is reported for the first time that a point mutation of TMEM67 leads to a gene dose-dependent hydrocephalic phenotype in the Wistar polycystic kidney (Wpk) rat. Animals with TMEM67 heterozygous mutations manifest slowly progressing hydrocephalus, observed during the postnatal period and continuing into adulthood. These animals have no overt renal phenotype. The TMEM67 homozygous mutant rats have severe ventriculomegaly as well as severe polycystic kidney disease and die during the neonatal period. Protein localization in choroid plexus epithelial cells indicates that aquaporin 1 and claudin-1 both remain normally polarized in all genotypes. The choroid plexus epithelial cells may have selectively enhanced permeability as evidenced by increased Na+, K+ and Cl- in the cerebrospinal fluid of the severely hydrocephalic animals. Collectively, these results suggest that TMEM67 is required for the regulation of choroid plexus epithelial cell fluid and electrolyte homeostasis. The Wpk rat model, orthologous to human MKS3, provides a unique platform to study the development of both severe and mild hydrocephalus.
  • Loading...
    Thumbnail Image
    Item
    Identification of elongated cilia and chiral malformation in TMEM67 mutant brains
    (Office of the Vice Chancellor for Research, 2015-04-17) Shim, Joon W.; Territo, Paul R.; Maue, Ellen; Ahmed, Shehab; Watson, John C.; Fulkerson, Dan; Blazer-Yost, Bonnie L.
    Transmembrane protein 67 (TMEM67) is encoded by one of four syndromic encephalocele genes. In humans a mutation in TMEM67 causes Meckel Gruber Syndrome, type 3 (MKS3) which is characterized by severe encephalocele and cystic kidneys and is usually fatal in the neonatal period. MKS3 is one of a spectrum of diseases known as ciliopathies because the proteins responsible for the disease are found in cells with the primary cilia. Primary cilia are a single, hair-like organelle that is found on the apical membrane of polarized cells and is thought to be involved in formation of left-right asymmetry during development as well as mechano- and chemo-reception. Here we characterize previously unreported details of cerebral phenotype in the Wistar polycystic kidney (Wpk) rats with a TMEM67 mutation. In choroid plexus (CP) epithelia of wild type animals, TMEM67 localizes to the plasma membrane and to a region close to the basal side of CP primary cilia. In a choroid plexus cell line that forms an epithelial sheet, the TMEM67 is found intracellularly but also localizes to the junctional complexes as evidenced by β catenin co-localization. Absence of normal TMEM67 leads to elongation of primary cilia in the ependymal cells lining the cerebral ventricles of the TMEM67-/- animals indicating that this protein is involved in the regulation of cilia length. Reduced aqueduct, bilateral dilatation with fusion of lateral ventricles, swelling of the hippocampus, and altered hindbrain histoarchitecture are noted in the TMEM67-/- rats. In the heterozygous animals mild asymmetric ventriculomegaly primarily on the left side is observed during early postnatal periods and continues into adulthood. These results suggest that TMEM67 is required for cilia length control and normal development of cerebral midline that maintains the symmetry of the left and right hemispheres. The Wpk rat model, orthologous to human MKS3, provides a unique model in which to study the development of both severe (TMEM67-/-) and mild (TMEM67+/-) hydrocephalus and other developmental abnormalities that are commonly found in human patients with ciliopathies.
  • Loading...
    Thumbnail Image
    Item
    Inactivation of Lrp5 in Osteocytes Reduces Young’s Modulus and Responsiveness to the Mechanical Loading
    (Elsevier, 2013) Zhao, Liming; Shim, Joon W.; Dodge, Todd R.; Robling, Alexander G.; Yokota, Hiroki; Anatomy, Cell Biology and Physiology, School of Medicine
    Low-density-lipoprotein receptor-related protein 5 (Lrp5) is a co-receptor in Wnt signaling, which plays a critical role in development and maintenance of bone. Osteoporosis-pseudoglioma syndrome, for instance, arises from loss-of-function mutations in Lrp5, and global deletion of Lrp5 in mice results in significantly lower bone mineral density. Since osteocytes are proposed to act as a mechanosensor in the bone, we addressed a question whether a conditional loss-of-function mutation of Lrp5 selective to osteocytes (Dmp1-Cre;Lrp5(f/f)) would alter responses to ulna loading. Loading was applied to the right ulna for 3 min (360 cycles at 2Hz) at a peak force of 2.65 N for 3 consecutive days, and the contralateral ulna was used as a non-loaded control. Young's modulus was determined using a midshaft section of the femur. The results showed that compared to age-matched littermate controls, mice lacking Lrp5 in osteocytes exhibited smaller skeletal size with reduced bone mineral density and content. Compared to controls, Lrp5 deletion in osteocytes also led to a 4.6-fold reduction in Young's modulus. In response to ulna loading, mineralizing surface, mineral apposition rate, and bone formation rate were diminished in mice lacking Lrp5 in osteocytes by 52%, 85%, and 69%, respectively. Collectively, the results support the notion that the loss-of-function mutation of Lrp5 in osteocytes causes suppression of mechanoresponsiveness and reduces bone mass and Young's modulus. In summary, Lrp5-mediated Wnt signaling significantly contributes to maintenance of mechanical properties and bone mass.
  • Loading...
    Thumbnail Image
    Item
    Knee loading reduces MMP13 activity in the mouse cartilage
    (Springer Nature, 2013-11-01) Hamamura, Kazunori; Zhang, Ping; Zhao, Liming; Shim, Joon W.; Chen, Andy; Dodge, Todd R.; Wan, Qiaoqiao; Shih, Han; Na, Sungsoo; Lin, Chien-Chi; Sun, Hui Bin; Yokota, Hiroki; Anatomy, Cell Biology and Physiology, School of Medicine
    Background: Moderate loads with knee loading enhance bone formation, but its effects on the maintenance of the knee are not well understood. In this study, we examined the effects of knee loading on the activity of matrix metalloproteinase13 (MMP13) and evaluated the role of p38 MAPK and Rac1 GTPase in the regulation of MMP13. Methods: Knee loading (0.5-3 N for 5 min) was applied to the right knee of surgically-induced osteoarthritis (OA) mice as well as normal (non-OA) mice, and MMP13 activity in the femoral cartilage was examined. The sham-loaded knee was used as a non-loading control. We also employed primary non-OA and OA human chondrocytes as well as C28/I2 chondrocyte cells, and examined MMP13 activity and molecular signaling in response to shear at 2-20 dyn/cm². Results: Daily knee loading at 1 N for 2 weeks suppressed cartilage destruction in the knee of OA mice. Induction of OA elevated MMP13 activity and knee loading at 1 N suppressed this elevation. MMP13 activity was also increased in primary OA chondrocytes, and this increase was attenuated by applying shear at 10 dyn/cm². Load-driven reduction in MMP13 was associated with a decrease in the phosphorylation level of p38 MAPK (p-p38) and NFκB (p-NFκB). Molecular imaging using a fluorescence resonance energy transfer (FRET) technique showed that Rac1 activity was reduced by shear at 10 dyn/cm² and elevated by it at 20 dyn/cm². Silencing Rac1 GTPase significantly reduced MMP13 expression and p-p38 but not p-NFκB. Transfection of a constitutively active Rac1 GTPase mutant increased MMP13 activity, while a dominant negative mutant decreased it. Conclusions: Knee loading reduces MMP13 activity at least in part through Rac1-mediated p38 MAPK signaling. This study suggests the possibility of knee loading as a therapy not only for strengthening bone but also preventing tissue degradation of the femoral cartilage.
  • Loading...
    Thumbnail Image
    Item
    Physical Weight Loading Induces Expression of Tryptophan Hydroxylase 2 in the Brain Stem
    (2014-01) Shim, Joon W.; Dodge, Todd R.; Hammond, Max A.; Wallace, Joseph M.; Zhou, Feng C.; Yokota, Hiroki
    Sustaining brain serotonin is essential in mental health. Physical activities can attenuate mental problems by enhancing serotonin signaling. However, such activity is not always possible in disabled individuals or patients with dementia. Knee loading, a form of physical activity, has been found to mimic effects of voluntary exercise. Focusing on serotonergic signaling, we addressed a question: Does local mechanical loading to the skeleton elevate expression of tryptophan hydroxylase 2 (tph2) that is a rate-limiting enzyme for brain serotonin? A 5 min knee loading was applied to mice using 1 N force at 5 Hz for 1,500 cycles. A 5-min treadmill running was used as an exercise (positive) control, and a 90-min tail suspension was used as a stress (negative) control. Expression of tph2 was determined 30 min – 2 h in three brain regions ––frontal cortex (FC), ventromedial hypothalamus (VMH), and brain stem (BS). We demonstrated for the first time that knee loading and treadmill exercise upregulated the mRNA level of tph2 in the BS, while tail suspension downregulated it. The protein level of tph2 in the BS was also upregulated by knee loading and downregulated by tail suspension. Furthermore, the downregulation of tph2 mRNA by tail suspension can be partially suppressed by pre-application of knee loading. The expression of tph2 in the FC and VMH was not significantly altered with knee loading. In this study we provided evidence that peripheral mechanical loading can activate central tph2 expression, suggesting that physical cues may mediate tph2-cathalyzed serotonergic signaling in the brain.
  • Loading...
    Thumbnail Image
    Item
    Rac1 Mediates Load-Driven Attenuation of mRNA Expression of Nerve Growth Factor Beta in Cartilage and Chondrocytes
    (International Society of Musculoskeletal and Neuronal Interactions, 2013) Shim, Joon W.; Hamamura, Kazunori; Chen, Andy; Wan, Qiaoqiao; Na, Sungsoo; Yokota, Hiroki; Anatomy, Cell Biology and Physiology, School of Medicine
    Objectives: To determine effect of gentle loads applied to the knee on mRNA expression of nerve growth factor, particularly, the active beta subunit (NGFβ) in cartilage and chondrocyte. Methods: Cyclic compressive loads in vivo and fluid flow in vitro were used to determine the mRNA levels. Alteration of Rac1 GTPase as well as effect of salubrinal, a specific inhibitor of eIF2α phosphatase was assessed using fluorescence resonance energy transfer (FRET)-based Rac1 biosensor. Results: Knee loading at 1 N reduced mRNA levels of NGFβ and its low affinity receptor, p75 in cartilage and subchondral bone. In cartilage, knee loading at 1 N reduced the phosphorylation level of p38 MAPK (p38-p) and activity of Rac1 GTPase. Consistent with in vivo results, fluid flow at 5 and 10 dyn/cm(2) reduced mRNA levels of NGFβ and p75 in C28/I2 human chondrocytes. SB203580, which decreases p38-p, reduced the mRNA levels of NGFβ and p75. Silencing Rac1 by siRNA decreased the levels of p38-p and NGFβ mRNA but not p75. Furthermore, administration of salubrinal reduced FRET-based activity of Rac1 as well as the mRNA levels of NGFβ and p75. Conclusions: These results provide evidence that mechanical stimulation and salubrinal may attenuate pain perception-linked NGFβ signaling through Rac1-mediated p38 MAPK.
  • Loading...
    Thumbnail Image
    Item
    TRPV4 antagonists ameliorate ventriculomegaly in a rat model of hydrocephalus
    (American Society for Clinical Investigation, 2020-09-17) Hochstetler, Alexandra E.; Smith, Hillary M.; Preston, Daniel C.; Reed, Makenna M.; Territo, Paul R.; Shim, Joon W.; Fulkerson, Daniel; Blazer-Yost, Bonnie L.; Biology, School of Science
    Hydrocephalus is a serious condition that impacts patients of all ages. The standards of care are surgical options to divert, or inhibit production of, cerebrospinal fluid; to date, there are no effective pharmaceutical treatments, to our knowledge. The causes vary widely, but one commonality of this condition is aberrations in salt and fluid balance. We have used a genetic model of hydrocephalus to show that ventriculomegaly can be alleviated by inhibition of the transient receptor potential vanilloid 4, a channel that is activated by changes in osmotic balance, temperature, pressure and inflammatory mediators. The TRPV4 antagonists do not appear to have adverse effects on the overall health of the WT or hydrocephalic animals.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University