- Browse by Author
Browsing by Author "Shilling, Paul D."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Circadian rhythms in bipolar disorder patient-derived neurons predict lithium response: Preliminary studies(Springer Nature, 2021) Mishra, Himanshu K.; Ying, Noelle M.; Luis, Angelica; Wei, Heather; Nguyen, Metta; Nakhla, Timothy; Vandenburgh, Sara; Alda, Martin; Berrettini, Wade H.; Brennand, Kristen J.; Calabrese, Joseph R.; Coryell, William H.; Frye, Mark A.; Gage, Fred H.; Gershon, Elliot S.; McInnis, Melvin G.; Nievergelt, Caroline M.; Nurnberger, John I.; Shilling, Paul D.; Oedegaard, Ketil J.; Zandi, Peter P.; The Pharmacogenomics of Bipolar Disorder Study; Kelsoe, John R.; Welsh, David K.; McCarthy, Michael J.; Psychiatry, School of MedicineBipolar disorder (BD) is a neuropsychiatric illness defined by recurrent episodes of mania/hypomania, depression and circadian rhythm abnormalities. Lithium is an effective drug for BD, but 30–40% of patients fail to respond adequately to treatment. Previous work has demonstrated that lithium affects the expression of “clock genes” and that lithium responders (Li-R) can be distinguished from non-responders (Li-NR) by differences in circadian rhythms. However, circadian rhythms have not been evaluated in BD patient neurons from Li-R and Li-NR. We used induced pluripotent stem cells (iPSCs) to culture neuronal precursor cells (NPC) and glutamatergic neurons from BD patients characterized for lithium responsiveness and matched controls. We identified strong circadian rhythms in Per2-luc expression in NPCs and neurons from controls and Li-R, but NPC rhythms in Li-R had a shorter circadian period. Li-NR rhythms were low-amplitude and profoundly weakened. In NPCs and neurons, expression of PER2 was higher in both BD groups compared to controls. In neurons, PER2 protein levels were higher in BD than controls, especially in Li-NR samples. In single cells, NPC and neuron rhythms in both BD groups were desynchronized compared to controls. Lithium lengthened period in Li-R and control neurons but failed to alter rhythms in Li-NR. In contrast, temperature entrainment increased amplitude across all groups, and partly restored rhythms in Li-NR neurons. We conclude that neuronal circadian rhythm abnormalities are present in BD and most pronounced in Li-NR. Rhythm deficits in BD may be partly reversible through stimulation of entrainment pathways.Item Clinical predictors of non-response to lithium treatment in the Pharmacogenomics of Bipolar Disorder (PGBD) study(Wiley, 2021) Lin, Yian; Maihofer, Adam X.; Stapp, Emma; Ritchey, Megan; Alliey‐Rodriguez, Ney; Anand, Amit; Balaraman, Yokesh; Berrettini, Wade H.; Bertram, Holli; Bhattacharjee, Abesh; Calkin, Cynthia V.; Conroy, Carla; Coryell, William; D'Arcangelo, Nicole; DeModena, Anna; Biernacka, Joanna M.; Fisher, Carrie; Frazier, Nicole; Frye, Mark; Gao, Keming; Garnham, Julie; Gershon, Elliot; Glazer, Kara; Goes, Fernando S.; Goto, Toyomi; Karberg, Elizabeth; Harrington, Gloria; Jakobsen, Petter; Kamali, Masoud; Kelly, Marisa; Leckband, Susan G.; Lohoff, Falk W.; Stautland, Andrea; McCarthy, Michael J.; McInnis, Melvin G.; Mondimore, Francis; Morken, Gunnar; Nurnberger, John I.; Oedegaard, Ketil J.; Syrstad, Vigdis Elin Giever; Ryan, Kelly; Schinagle, Martha; Schoeyen, Helle; Andreassen, Ole A.; Shaw, Marth; Shilling, Paul D.; Slaney, Claire; Tarwater, Bruce; Calabrese, Joseph R.; Alda, Martin; Nievergelt, Caroline M.; Zandi, Peter P.; Kelsoe, John R.; Psychiatry, School of MedicineBackground Lithium is regarded as a first-line treatment for bipolar disorder (BD), but partial response and non-response commonly occurs. There exists a need to identify lithium non-responders prior to initiating treatment. The Pharmacogenomics of Bipolar Disorder (PGBD) Study was designed to identify predictors of lithium response. Methods The PGBD Study was an eleven site prospective trial of lithium treatment in bipolar I disorder. Subjects were stabilized on lithium monotherapy over 4 months and gradually discontinued from all other psychotropic medications. After ensuring a sustained clinical remission (defined by a score of ≤3 on the CGI for 4 weeks) had been achieved, subjects were followed for up to 2 years to monitor clinical response. Cox proportional hazard models were used to examine the relationship between clinical measures and time until failure to remit or relapse. Results A total of 345 individuals were enrolled into the study and included in the analysis. Of these, 101 subjects failed to remit or relapsed, 88 achieved remission and continued to study completion, and 156 were terminated from the study for other reasons. Significant clinical predictors of treatment failure (p < 0.05) included baseline anxiety symptoms, functional impairments, negative life events and lifetime clinical features such as a history of migraine, suicidal ideation/attempts, and mixed episodes, as well as a chronic course of illness. Conclusions In this PGBD Study of lithium response, several clinical features were found to be associated with failure to respond to lithium. Future validation is needed to confirm these clinical predictors of treatment failure and their use clinically to distinguish who will do well on lithium before starting pharmacotherapy.Item Efficient region-based test strategy uncovers genetic risk factors for functional outcome in bipolar disorder(Elsevier, 2019-01-01) Budde, Monika; Friedrichs, Stefanie; Alliey-Rodriguez, Ney; Ament, Seth; Badner, Judith A.; Berrettini, Wade H.; Bloss, Cinnamon S.; Byerley, William; Cichon, Sven; Comes, Ashley L.; Coryell, William; Craig, David W.; Degenhardt, Franziska; Edenberg, Howard J.; Foroud, Tatiana; Forstner, Andreas J.; Frank, Josef; Gershon, Elliot S.; Goes, Fernando S.; Greenwood, Tiffany A.; Guo, Yiran; Hipolito, Maria; Hood, Leroy; Keating, Brendan J.; Koller, Daniel L.; Lawson, William B.; Liu, Chunyu; Mahon, Pamela B.; McInnis, Melvin G.; McMahon, Francis J.; Meier, Sandra M.; Mühleisen, Thomas W.; Murray, Sarah S.; Nievergelt, Caroline M.; Nurnberger, John I.; Nwulia, Evaristus A.; Potash, James B.; Quarless, Danjuma; Rice, John; Roach, Jared C.; Scheftner, William A.; Schork, Nicholas J.; Shekhtman, Tatyana; Shilling, Paul D.; Smith, Erin N.; Streit, Fabian; Strohmaier, Jana; Szelinger, Szabolcs; Treutlein, Jens; Witt, Stephanie H.; Zandi, Peter P.; Zhang, Peng; Zöllner, Sebastian; Bickeböller, Heike; Falkai, Peter G.; Kelsoe, John R.; Nöthen, Markus M.; Rietschel, Marcella; Schulze, Thomas G.; Malzahn, Dörthe; Biochemistry and Molecular Biology, School of MedicineGenome-wide association studies of case-control status have advanced the understanding of the genetic basis of psychiatric disorders. Further progress may be gained by increasing sample size but also by new analysis strategies that advance the exploitation of existing data, especially for clinically important quantitative phenotypes. The functionally-informed efficient region-based test strategy (FIERS) introduced herein uses prior knowledge on biological function and dependence of genotypes within a powerful statistical framework with improved sensitivity and specificity for detecting consistent genetic effects across studies. As proof of concept, FIERS was used for the first genome-wide single nucleotide polymorphism (SNP)-based investigation on bipolar disorder (BD) that focuses on an important aspect of disease course, the functional outcome. FIERS identified a significantly associated locus on chromosome 15 (hg38: chr15:48965004 – 49464789 bp) with consistent effect strength between two independent studies (GAIN/TGen: European Americans, BOMA: Germans; n = 1592 BD patients in total). Protective and risk haplotypes were found on the most strongly associated SNPs. They contain a CTCF binding site (rs586758); CTCF sites are known to regulate sets of genes within a chromatin domain. The rs586758 – rs2086256 – rs1904317 haplotype is located in the promoter flanking region of the COPS2 gene, close to microRNA4716, and the EID1, SHC4, DTWD1 genes as plausible biological candidates. While implication with BD is novel, COPS2, EID1, and SHC4 are known to be relevant for neuronal differentiation and function and DTWD1 for psychopharmacological side effects. The test strategy FIERS that enabled this discovery is equally applicable for tag SNPs and sequence data.Item Focal adhesion is associated with lithium response in bipolar disorder: evidence from a network-based multi-omics analysis(Springer Nature, 2024) Niemsiri, Vipavee; Rosenthal, Sara Brin; Nievergelt, Caroline M.; Maihofer, Adam X.; Marchetto, Maria C.; Santos, Renata; Shekhtman, Tatyana; Alliey-Rodriguez, Ney; Anand, Amit; Balaraman, Yokesh; Berrettini, Wade H.; Bertram, Holli; Burdick, Katherine E.; Calabrese, Joseph R.; Calkin, Cynthia V.; Conroy, Carla; Coryell, William H.; DeModena, Anna; Eyler, Lisa T.; Feeder, Scott; Fisher, Carrie; Frazier, Nicole; Frye, Mark A.; Gao, Keming; Garnham, Julie; Gershon, Elliot S.; Goes, Fernando S.; Goto, Toyomi; Harrington, Gloria J.; Jakobsen, Petter; Kamali, Masoud; Kelly, Marisa; Leckband, Susan G.; Lohoff, Falk W.; McCarthy, Michael J.; McInnis, Melvin G.; Craig, David; Millett, Caitlin E.; Mondimore, Francis; Morken, Gunnar; Nurnberger, John I.; O'Donovan, Claire; Øedegaard, Ketil J.; Ryan, Kelly; Schinagle, Martha; Shilling, Paul D.; Slaney, Claire; Stapp, Emma K.; Stautland, Andrea; Tarwater, Bruce; Zandi, Peter P.; Alda, Martin; Fisch, Kathleen M.; Gage, Fred H.; Kelsoe, John R.; Psychiatry, School of MedicineLithium (Li) is one of the most effective drugs for treating bipolar disorder (BD), however, there is presently no way to predict response to guide treatment. The aim of this study is to identify functional genes and pathways that distinguish BD Li responders (LR) from BD Li non-responders (NR). An initial Pharmacogenomics of Bipolar Disorder study (PGBD) GWAS of lithium response did not provide any significant results. As a result, we then employed network-based integrative analysis of transcriptomic and genomic data. In transcriptomic study of iPSC-derived neurons, 41 significantly differentially expressed (DE) genes were identified in LR vs NR regardless of lithium exposure. In the PGBD, post-GWAS gene prioritization using the GWA-boosting (GWAB) approach identified 1119 candidate genes. Following DE-derived network propagation, there was a highly significant overlap of genes between the top 500- and top 2000-proximal gene networks and the GWAB gene list (Phypergeometric = 1.28E-09 and 4.10E-18, respectively). Functional enrichment analyses of the top 500 proximal network genes identified focal adhesion and the extracellular matrix (ECM) as the most significant functions. Our findings suggest that the difference between LR and NR was a much greater effect than that of lithium. The direct impact of dysregulation of focal adhesion on axon guidance and neuronal circuits could underpin mechanisms of response to lithium, as well as underlying BD. It also highlights the power of integrative multi-omics analysis of transcriptomic and genomic profiling to gain molecular insights into lithium response in BD.Item Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology(Springer Nature, 2021-06) Mullins, Niamh; Forstner, Andreas J.; O'Connell, Kevin S.; Coombes, Brandon; Coleman, Jonathan R.I.; Qiao, Zhen; Als, Thomas D.; Bigdeli, Tim B.; Børte, Sigrid; Bryois, Julien; Charney, Alexander W.; Drange, Ole Kristian; Gandal, Michael J.; Hagenaars, Saskia P.; Ikeda, Masashi; Kamitaki, Nolan; Kim, Minsoo; Krebs, Kristi; Panagiotaropoulou, Georgia; Schilder, Brian M.; Sloofman, Laura G.; Steinberg, Stacy; Trubetskoy, Vassily; Winsvold, Bendik S.; Won, Hong-Hee; Abramova, Liliya; Adorjan, Kristina; Agerbo, Esben; Al Eissa, Mariam; Albani, Diego; Alliey-Rodriguez, Ney; Anjorin, Adebayo; Antilla, Verneri; Antoniou, Anastasia; Awasthi, Swapnil; Baek, Ji Hyun; Bækvad-Hansen, Marie; Bass, Nicholas; Bauer, Michael; Beins, Eva C.; Bergen, Sarah E.; Birner, Armin; Pedersen, Carsten Bøcker; Bøen, Erlend; Boks, Marco P.; Bosch, Rosa; Brum, Murielle; Brumpton, Ben M.; Brunkhorst-Kanaan, Nathalie; Budde, Monika; Bybjerg-Grauholm, Jonas; Byerley, William; Cairns, Murray; Casas, Miquel; Cervantes, Pablo; Clarke, Toni-Kim; Cruceanu, Cristiana; Cuellar-Barboza, Alfredo; Cunningham, Julie; Curtis, David; Czerski, Piotr M.; Dale, Anders M.; Dalkner, Nina; David, Friederike S.; Degenhardt, Franziska; Djurovic, Srdjan; Dobbyn, Amanda L.; Douzenis, Athanassios; Elvsåshagen, Torbjørn; Escott-Price, Valentina; Ferrier, I. Nicol; Fiorentino, Alessia; Foroud, Tatiana M.; Forty, Liz; Frank, Josef; Frei, Oleksandr; Freimer, Nelson B.; Frisén, Louise; Gade, Katrin; Garnham, Julie; Gelernter, Joel; Pedersen, Marianne Giørtz; Gizer, Ian R.; Gordon, Scott D.; Gordon-Smith, Katherine; Greenwood, Tiffany A.; Grove, Jakob; Guzman-Parra, José; Ha, Kyooseob; Haraldsson, Magnus; Hautzinger, Martin; Heilbronner, Urs; Hellgren, Dennis; Herms, Stefan; Hoffmann, Per; Holmans, Peter A.; Huckins, Laura; Jamain, Stéphane; Johnson, Jessica S.; Kalman, Janos L.; Kamatani, Yoichiro; Kennedy, James L.; Kittel-Schneider, Sarah; Knowles, James A.; Kogevinas, Manolis; Koromina, Maria; Kranz, Thorsten M.; Kranzler, Henry R.; Kubo, Michiaki; Kupka, Ralph; Kushner, Steven A.; Lavebratt, Catharina; Lawrence, Jacob; Leber, Markus; Lee, Heon-Jeong; Lee, Phil H.; Levy, Shawn E.; Lewis, Catrin; Liao, Calwing; Lucae, Susanne; Lundberg, Martin; MacIntyre, Donald J.; Magnusson, Sigurdur H.; Maier, Wolfgang; Maihofer, Adam; Malaspina, Dolores; Maratou, Eirini; Martinsson, Lina; Mattheisen, Manuel; McCarroll, Steven A.; McGregor, Nathaniel W.; McGuffin, Peter; McKay, James D.; Medeiros, Helena; Medland, Sarah E.; Millischer, Vincent; Montgomery, Grant W.; Moran, Jennifer L.; Morris, Derek W.; Mühleisen, Thomas W.; O'Brien, Niamh; O'Donovan, Claire; Loohuis, Loes M. Olde; Oruc, Lilijana; Papiol, Sergi; Pardiñas, Antonio F.; Perry, Amy; Pfennig, Andrea; Porichi, Evgenia; Potash, James B.; Quested, Digby; Raj, Towfique; Rapaport, Mark H.; DePaulo, J. Raymond; Regeer, Eline J.; Rice, John P.; Rivas, Fabio; Rivera, Margarita; Roth, Julian; Roussos, Panos; Ruderfer, Douglas M.; Sánchez-Mora, Cristina; Schulte, Eva C.; Senner, Fanny; Sharp, Sally; Shilling, Paul D.; Sigurdsson, Engilbert; Sirignano, Lea; Slaney, Claire; Smeland, Olav B.; Smith, Daniel J.; Sobell, Janet L.; Søholm Hansen, Christine; Artigas, Maria Soler; Spijker, Anne T.; Stein, Dan J.; Strauss, John S.; Świątkowska, Beata; Terao, Chikashi; Thorgeirsson, Thorgeir E.; Toma, Claudio; Tooney, Paul; Tsermpini, Evangelia-Eirini; Vawter, Marquis P.; Vedder, Helmut; Walters, James T.R.; Witt, Stephanie H.; Xi, Simon; Xu, Wei; Yang, Jessica Mei Kay; Young, Allan H.; Young, Hannah; Zandi, Peter P.; Zhou, Hang; Zillich, Lea; Adolfsson, Rolf; Agartz, Ingrid; Alda, Martin; Alfredsson, Lars; Babadjanova, Gulja; Backlund, Lena; Baune, Bernhard T.; Bellivier, Frank; Bengesser, Susanne; Berrettini, Wade H.; Blackwood, Douglas H.R.; Boehnke, Michael; Børglum, Anders D.; Breen, Gerome; Carr, Vaughan J.; Catts, Stanley; Corvin, Aiden; Craddock, Nicholas; Dannlowski, Udo; Dikeos, Dimitris; Esko, Tõnu; Etain, Bruno; Ferentinos, Panagiotis; Frye, Mark; Fullerton, Janice M.; Gawlik, Micha; Gershon, Elliot S.; Goes, Fernando S.; Green, Melissa J.; Grigoroiu-Serbanescu, Maria; Hauser, Joanna; Henskens, Frans; Hillert, Jan; Hong, Kyung Sue; Hougaard, David M.; Hultman, Christina M.; Hveem, Kristian; Iwata, Nakao; Jablensky, Assen V.; Jones, Ian; Jones, Lisa A.; Kahn, René S.; Kelsoe, John R.; Kirov, George; Landén, Mikael; Leboyer, Marion; Lewis, Cathryn M.; Li, Qingqin S.; Lissowska, Jolanta; Lochner, Christine; Loughland, Carmel; Martin, Nicholas G.; Mathews, Carol A.; Mayoral, Fermin; McElroy, Susan L.; McIntosh, Andrew M.; McMahon, Francis J.; Melle, Ingrid; Michie, Patricia; Milani, Lili; Mitchell, Philip B.; Morken, Gunnar; Mors, Ole; Mortensen, Preben Bo; Mowry, Bryan; Müller-Myhsok, Bertram; Myers, Richard M.; Neale, Benjamin M.; Nievergelt, Caroline M.; Nordentoft, Merete; Nöthen, Markus M.; O'Donovan, Michael C.; Oedegaard, Ketil J.; Olsson, Tomas; Owen, Michael J.; Paciga, Sara A.; Pantelis, Chris; Pato, Carlos; Pato, Michele T.; Patrinos, George P.; Perlis, Roy H.; Posthuma, Danielle; Ramos-Quiroga, Josep Antoni; Reif, Andreas; Reininghaus, Eva Z.; Ribasés, Marta; Rietschel, Marcella; Ripke, Stephan; Rouleau, Guy A.; Saito, Takeo; Schall, Ulrich; Schalling, Martin; Schofield, Peter R.; Schulze, Thomas G.; Scott, Laura J.; Scott, Rodney J.; Serretti, Alessandro; Weickert, Cynthia Shannon; Smoller, Jordan W.; Stefansson, Hreinn; Stefansson, Kari; Stordal, Eystein; Streit, Fabian; Sullivan, Patrick F.; Turecki, Gustavo; Vaaler, Arne E.; Vieta, Eduard; Vincent, John B.; Waldman, Irwin D.; Weickert, Thomas W.; Werge, Thomas; Wray, Naomi R.; Zwart, John-Anker; Biernacka, Joanna M.; Nurnberger, John I.; Cichon, Sven; Edenberg, Howard J.; Stahl, Eli A.; McQuillin, Andrew; Florio, Arianna Di; Ophoff, Roel A.; Andreassen, Ole A.; Medical and Molecular Genetics, School of MedicineBipolar disorder is a heritable mental illness with complex etiology. We performed a genome-wide association study of 41,917 bipolar disorder cases and 371,549 controls of European ancestry, which identified 64 associated genomic loci. Bipolar disorder risk alleles were enriched in genes in synaptic signaling pathways and brain-expressed genes, particularly those with high specificity of expression in neurons of the prefrontal cortex and hippocampus. Significant signal enrichment was found in genes encoding targets of antipsychotics, calcium channel blockers, antiepileptics and anesthetics. Integrating expression quantitative trait locus data implicated 15 genes robustly linked to bipolar disorder via gene expression, encoding druggable targets such as HTR6, MCHR1, DCLK3 and FURIN. Analyses of bipolar disorder subtypes indicated high but imperfect genetic correlation between bipolar disorder type I and II and identified additional associated loci. Together, these results advance our understanding of the biological etiology of bipolar disorder, identify novel therapeutic leads and prioritize genes for functional follow-up studies.