- Browse by Author
Browsing by Author "Shields, Richard K."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Longitudinal changes in white matter as measured with diffusion tensor imaging in adult-onset myotonic dystrophy type 1(Elsevier, 2023) Koscik, Timothy R.; van der Plas, Ellen; Long, Jeffrey D.; Cross, Stephen; Gutmann, Laurie; Cumming, Sarah A.; Monckton, Darren G.; Shields, Richard K.; Magnotta, Vincent; Nopoulos, Peggy C.; Neurology, School of MedicineMyotonic dystrophy type 1 is characterized by neuromuscular degeneration. Our objective was to compare change in white matter microstructure (fractional anisotropy, radial and axial diffusivity), and functional/clinical measures. Participants underwent yearly neuroimaging and neurocognitive assessments over three-years. Assessments encompassed full-scale intelligence, memory, language, visuospatial skills, attention, processing speed, and executive function, as well as clinical symptoms of muscle/motor function, apathy, and hypersomnolence. Mixed effects models were used to examine differences. 69 healthy adults (66.2% women) and 41 DM1 patients (70.7% women) provided 156 and 90 observations, respectively. There was a group by elapsed time interaction for cerebral white matter, where DM1 patients exhibited declines in white matter (all p<0.05). Likewise, DM1 patients either declined (motor), improved more slowly (intelligence), or remained stable (executive function) for functional outcomes. White matter was associated with functional performance; intelligence was predicted by axial (r = 0.832; p<0.01) and radial diffusivity (r = 0.291, p<0.05), and executive function was associated with anisotropy (r = 0.416, p<0.001), and diffusivity (axial: r = 0.237, p = 0.05 and radial: r = 0.300, p<0.05). Indices of white matter health are sensitive to progression in DM1. These results are important for clinical trial design, which utilize short intervals to establish treatment efficacy.Item Quantitative muscle MRI as a sensitive marker of early muscle pathology in myotonic dystrophy type 1(Wiley, 2021) van der Plas, Ellen; Gutmann, Laurie; Thedens, Dan; Shields, Richard K.; Langbehn, Kathleen; Guo, Zhihui; Sonka, Milan; Nopoulos, Peggy; Neurology, School of MedicineBackground: Quantitative muscle MRI as a sensitive marker of early muscle pathology and disease progression in adult-onset myotonic dystrophy type 1. The utility of muscle MRI as a marker of muscle pathology and disease progression in adult-onset myotonic dystrophy type 1 (DM1) was evaluated. Methods: This prospective, longitudinal study included 67 observations from 36 DM1 patients (50% female), and 92 observations from 49 healthy adults (49% female). Lower-leg 3T magnetic resonance imaging (MRI) scans were acquired. Volume and fat fraction (FF) were estimated using a three-point Dixon method, and T2-relaxometry was determined using a multi-echo spin-echo sequence. Muscles were segmented automatically. Mixed linear models were conducted to determine group differences across muscles and image modality, accounting for age, sex, and repeated observations. Differences in rate of change in volume, T2-relaxometry, and FF were also determined with mixed linear regression that included a group by elapsed time interaction. Results: Compared with healthy adults, DM1 patients exhibited reduced volume of the tibialis anterior, soleus, and gastrocnemius (GAS) (all, P < .05). T2-relaxometry and FF were increased across all calf muscles in DM1 compared to controls. (all, P < .01). Signs of muscle pathology, including reduced volume, and increased T2-relaxometry and FF were already noted in DM1 patients who did not exhibit clinical motor symptoms of DM1. As a group, DM1 patients exhibited a more rapid change than did controls in tibialis posterior volume (P = .05) and GAS T2-relaxometry (P = .03) and FF (P = .06). Conclusions: Muscle MRI renders sensitive, early markers of muscle pathology and disease progression in DM1. T2 relaxometry may be particularly sensitive to early muscle changes related to DM1.