- Browse by Author
Browsing by Author "Shelley, W. Chris"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Functional Differences Between Placental Micro- and Macrovascular Endothelial Colony-Forming Cells(Wiley, 2016-03) Solomon, Ioana; O’Reilly, Megan; Ionescu, Lavinia; Alphonse, Rajesh S.; Rajabali, Saima; Zhong, Shumei; Vadivel, Arul; Shelley, W. Chris; Yoder, Mervin C.; Thébaud, Bernard; Department of Pediatrics, IU School of MedicineAlterations in the development of the placental vasculature can lead to pregnancy complications, such as preeclampsia. Currently, the cause of preeclampsia is unknown, and there are no specific prevention or treatment strategies. Further insight into the placental vasculature may aid in identifying causal factors. Endothelial colony-forming cells (ECFCs) are a subset of endothelial progenitor cells capable of self-renewal and de novo vessel formation in vitro. We hypothesized that ECFCs exist in the micro- and macrovasculature of the normal, term human placenta. Human placentas were collected from term pregnancies delivered by cesarean section (n = 16). Placental micro- and macrovasculature was collected from the maternal and fetal side of the placenta, respectively, and ECFCs were isolated and characterized. ECFCs were CD31(+), CD105(+), CD144(+), CD146(+), CD14(-), and CD45(-), took up 1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indocarbocyanine perchlorate-labeled acetylated low-density lipoprotein, and bound Ulex europaeus agglutinin 1. In vitro, macrovascular ECFCs had a greater potential to generate high-proliferative colonies and formed more complex capillary-like networks on Matrigel compared with microvascular ECFCs. In contrast, in vivo assessment demonstrated that microvascular ECFCs had a greater potential to form vessels. Macrovascular ECFCs were of fetal origin, whereas microvascular ECFCs were of maternal origin. ECFCs exist in the micro- and macrovasculature of the normal, term human placenta. Although macrovascular ECFCs demonstrated greater vessel and colony-forming potency in vitro, this did not translate in vivo, where microvascular ECFCs exhibited a greater vessel-forming ability. These important findings contribute to the current understanding of normal placental vascular development and may aid in identifying factors involved in preeclampsia and other pregnancy complications.Item Sildenafil as a Rescue Agent Following Intestinal Ischemia and Reperfusion Injury(Elsevier, 2020-02) Moore, Hannah M.; Drucker, Natalie A.; Hosfield, Brian D.; Shelley, W. Chris; Markel, Troy A.; Surgery, School of MedicineBackground: Acute mesenteric ischemia carries a significant morbidity. Measures to improve blood flow parameters to the intestine may ameliorate the disease. Sildenafil, a phosphodiesterase 5 inhibitor, increases cyclic guanosine monophosphate and has been shown to prevent the effects of ischemia when given before injury. However, its effects as a rescue agent have not been established. We therefore hypothesized that sildenafil, when given as a rescue agent for intestinal ischemia, would improve mesenteric perfusion, limit intestinal epithelial injury, and decrease intestinal leukocyte chemoattractants. Methods: Eight to 12 wk-old-male C57BL/6J mice underwent laparotomy and temporary occlusion of the superior mesenteric artery for 60 min. Following ischemia, reperfusion was permitted, and before closing the abdomen, sildenafil was injected intraperitoneally in a variety of concentrations. After 24 h, reperfusion was reassessed. Animals were euthanized and intestines evaluated for histologic injury and leukocyte chemoattractants. Results: Postischemic administration of sildenafil did not improve mesenteric perfusion following intestinal ischemia and reperfusion injury. However, sildenafil did improve histologic injury scores in dose ranges of 0.01 to 10 mg/kg. No difference was noted in histological injury with 100 mg/kg dose, and all members of the 1000 mg/kg group died within 24 h of injury. Epithelial protection was not facilitated by the leukocyte chemoattractants Regulated on Activation, Normal T Cell Expressed, and Secreted, macrophage inflammatory protein 1 alpha, monocyte chemoattractant protein, neutrophil activating protein, or granulocyte colony stimulating factor. Conclusions: Administration of sildenafil following intestinal ischemia may limit intestinal mucosal injury but does not appear to alter mesenteric perfusion or leukocyte chemoattractant influx.