- Browse by Author
Browsing by Author "She, Pengxiang"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item GCN2 is required to increase fibroblast growth factor 21 and maintain hepatic triglyceride homeostasis during asparaginase treatment(APS, 2015-02-15) Wilson, Gabriel J.; Lennox, Brittany A.; She, Pengxiang; Mirek, Emily T.; Al Baghdadi, Rana J. T.; Fusakio, Michael E.; Dixon, Joseph L.; Henderson, Gregory C.; Wek, Ronald C.; Anthony, Tracy G.; Department of Biochemistry & Molecular Biology, IU School of MedicineThe antileukemic agent asparaginase triggers the amino acid response (AAR) in the liver by activating the eukaryotic initiation factor 2 (eIF2) kinase general control nonderepressible 2 (GCN2). To explore the mechanism by which AAR induction is necessary to mitigate hepatic lipid accumulation and prevent liver dysfunction during continued asparaginase treatment, wild-type and Gcn2 null mice were injected once daily with asparaginase or phosphate buffered saline for up to 14 days. Asparaginase induced mRNA expression of multiple AAR genes and greatly increased circulating concentrations of the metabolic hormone fibroblast growth factor 21 (FGF21) independent of food intake. Loss of Gcn2 precluded mRNA expression and circulating levels of FGF21 and blocked mRNA expression of multiple genes regulating lipid synthesis and metabolism including Fas, Ppara, Pparg, Acadm, and Scd1 in both liver and white adipose tissue. Furthermore, rates of triglyceride export and protein expression of apolipoproteinB-100 were significantly reduced in the livers of Gcn2 null mice treated with asparaginase, providing a mechanistic basis for the increase in hepatic lipid content. Loss of AAR-regulated antioxidant defenses in Gcn2 null livers was signified by reduced Gpx1 gene expression alongside increased lipid peroxidation. Substantial reductions in antithrombin III hepatic expression and activity in the blood of asparaginase-treated Gcn2 null mice indicated liver dysfunction. These results suggest that the ability of the liver to adapt to prolonged asparaginase treatment is influenced by GCN2-directed regulation of FGF21 and oxidative defenses, which, when lost, corresponds with maladaptive effects on lipid metabolism and hemostasis.Item General Control Nonderepressible 2 (GCN2) Kinase Protects Oligodendrocytes and White Matter during Branched-Chain Amino Acid Deficiency in Mice(2013-09) She, Pengxiang; Bunpo, Piyawan; Cundiff, Judy K.; Wek, Ronald C.; Harris, Robert A.; Anthony, Tracy G.; Department of Biochemistry and Molecular Biology, IU School of MedicineBranched-chain amino acid (BCAA) catabolism is regulated by branched-chain α-keto acid dehydrogenase, an enzyme complex that is inhibited when phosphorylated by its kinase (BDK). Loss of BDK function in mice and humans causes BCAA deficiency and epilepsy with autistic features. In response to amino acid deficiency, phosphorylation of eukaryotic initiation factor 2α (eIF2∼P) by general control nonderepressible 2 (GCN2) activates the amino acid stress response. We hypothesized that GCN2 functions to protect the brain during chronic BCAA deficiency. To test this idea, we generated mice lacking both Gcn2 and Bdk (GBDK) and examined the development of progeny. GBDK mice appeared normal at birth, but they soon stopped growing, developed severe ataxia, tremor, and anorexia, and died by postnatal day 15. BCAA levels in brain were diminished in both Bdk−/− and GBDK pups. Brains from Bdk−/− pups exhibited robust eIF2∼P and amino acid stress response induction, whereas these responses were absent in GBDK mouse brains. Instead, myelin deficiency and diminished expression of myelin basic protein were noted in GBDK brains. Genetic markers of oligodendrocytes and astrocytes were also reduced in GBDK brains in association with apoptotic cell death in white matter regions of the brain. GBDK brains further demonstrated reduced Sod2 and Cat mRNA and increased Tnfα mRNA expression. The data are consistent with the idea that loss of GCN2 during BCAA deficiency compromises glial cell defenses to oxidative and inflammatory stress. We conclude that GCN2 protects the brain from developing a lethal leukodystrophy in response to amino acid deficiencies.