- Browse by Author
Browsing by Author "Shaw, Chad A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Clinical exome sequencing efficacy and phenotypic expansions involving anomalous pulmonary venous return(Springer Nature, 2023) Huth, Emily A.; Zhao, Xiaonan; Owen, Nichole; Luna, Pamela N.; Vogel, Ida; Dorf, Inger L. H.; Joss, Shelagh; Clayton-Smith, Jill; Parker, Michael J.; Louw, Jacoba J.; Gewillig, Marc; Breckpot, Jeroen; Kraus, Alison; Sasaki, Erina; Kini, Usha; Burgess, Trent; Tan, Tiong Y.; Armstrong, Ruth; Neas, Katherine; Ferrero, Giovanni B.; Brusco, Alfredo; Kerstjens-Frederikse, Wihelmina S.; Rankin, Julia; Helvaty, Lindsey R.; Landis, Benjamin J.; Geddes, Gabrielle C.; McBride, Kim L.; Ware, Stephanie M.; Shaw, Chad A.; Lalani, Seema R.; Rosenfeld, Jill A.; Scott, Daryl A.; Medical and Molecular Genetics, School of MedicineAnomalous pulmonary venous return (APVR) frequently occurs with other congenital heart defects (CHDs) or extra-cardiac anomalies. While some genetic causes have been identified, the optimal approach to genetic testing in individuals with APVR remains uncertain, and the etiology of most cases of APVR is unclear. Here, we analyzed molecular data from 49 individuals to determine the diagnostic yield of clinical exome sequencing (ES) for non-isolated APVR. A definitive or probable diagnosis was made for 8 of those individuals yielding a diagnostic efficacy rate of 16.3%. We then analyzed molecular data from 62 individuals with APVR accrued from three databases to identify novel APVR genes. Based on data from this analysis, published case reports, mouse models, and/or similarity to known APVR genes as revealed by a machine learning algorithm, we identified 3 genes-EFTUD2, NAA15, and NKX2-1-for which there is sufficient evidence to support phenotypic expansion to include APVR. We also provide evidence that 3 recurrent copy number variants contribute to the development of APVR: proximal 1q21.1 microdeletions involving RBM8A and PDZK1, recurrent BP1-BP2 15q11.2 deletions, and central 22q11.2 deletions involving CRKL. Our results suggest that ES and chromosomal microarray analysis (or genome sequencing) should be considered for individuals with non-isolated APVR for whom a genetic etiology has not been identified, and that genetic testing to identify an independent genetic etiology of APVR is not warranted in individuals with EFTUD2-, NAA15-, and NKX2-1-related disorders.Item Validation Studies for Single Circulating Trophoblast Genetic Testing as a Form of Noninvasive Prenatal Diagnosis(Elsevier, 2019-12-05) Vossaert, Liesbeth; Wang, Qun; Salman, Roseen; McCombs, Anne K.; Patel, Vipulkumar; Qu, Chunjing; Mancini, Michael A.; Edwards, Dean P.; Malovannaya, Anna; Liu, Pengfei; Shaw, Chad A.; Levy, Brynn; Wapner, Ronald J.; Bi, Weimin; Breman, Amy M.; Van den Veyver, Ignatia B.; Beaudet, Arthur L.; Medical and Molecular Genetics, School of MedicineIt has long been appreciated that genetic analysis of fetal or trophoblast cells in maternal blood could revolutionize prenatal diagnosis. We implemented a protocol for single circulating trophoblast (SCT) testing using positive selection by magnetic-activated cell sorting and single-cell low-coverage whole-genome sequencing to detect fetal aneuploidies and copy-number variants (CNVs) at ∼1 Mb resolution. In 95 validation cases, we identified on average 0.20 putative trophoblasts/mL, of which 55% were of high quality and scorable for both aneuploidy and CNVs. We emphasize the importance of analyzing individual cells because some cells are apoptotic, in S-phase, or otherwise of poor quality. When two or more high-quality trophoblast cells were available for singleton pregnancies, there was complete concordance between all trophoblasts unless there was evidence of confined placental mosaicism. SCT results were highly concordant with available clinical data from chorionic villus sampling (CVS) or amniocentesis procedures. Although determining the exact sensitivity and specificity will require more data, this study further supports the potential for SCT testing to become a diagnostic prenatal test.