ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Sharron, Matthew P."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A biomarker panel for risk of early respiratory failure following hematopoietic cell transplantation
    (American Society of Hematology, 2022) Rowan, Courtney M.; Smith, Lincoln; Sharron, Matthew P.; Loftis, Laura; Kudchadkar, Sapna; Duncan, Christine N.; Pike, Francis; Carpenter, Paul A.; Jacobsohn, David; Bollard, Catherine M.; Cruz, Conrad Russell Y.; Malatpure, Abhijeet; Farag, Sherif; Renbarger, Jamie; Little, Morgan R.; Gafken, Phillip R.; Krance, Robert A.; Cooke, Kenneth R.; Paczesny, Sophie; Pediatrics, School of Medicine
    Plasma biomarkers associated with respiratory failure (RF) following hematopoietic cell transplantation (HCT) have not been identified. Therefore, we aimed to validate early (7 and 14 days post-HCT) risk biomarkers for RF. Using tandem mass spectrometry, we compared plasma obtained at day 14 post-HCT from 15 patients with RF and 15 patients without RF. Six candidate proteins, from this discovery cohort or identified in the literature, were measured by enzyme-linked immunosorbent assay in day-7 and day-14 post-HCT samples from the training (n = 213) and validation (n = 119) cohorts. Cox proportional-hazard analyses with biomarkers dichotomized by Youden's index, as well as landmark analyses to determine the association between biomarkers and RF, were performed. Of the 6 markers, Stimulation-2 (ST2), WAP 4-disulfide core domain protein 2 (WFDC2), interleukin-6 (IL-6), and tumor necrosis factor receptor 1 (TNFR1), measured at day 14 post-HCT, had the most significant association with an increased risk for RF in the training cohort (ST2: hazard ratio [HR], 4.5, P = .004; WFDC2: HR, 4.2, P = .010; IL-6: HR, 6.9, P < .001; and TFNR1: HR, 6.1, P < .001) and in the validation cohort (ST2: HR, 23.2, P = .013; WFDC2: HR, 18.2, P = .019; IL-6: HR, 12.2, P = .014; and TFNR1: HR, 16.1, P = .001) after adjusting for the conditioning regimen. Using cause-specific landmark analyses, including days 7 and 14, high plasma levels of ST2, WFDC2, IL-6, and TNFR1 were associated with an increased HR for RF in the training and validation cohorts. These biomarkers were also predictive of mortality from RF. ST2, WFDC2, IL-6 and TNFR1 levels measured early posttransplantation improve risk stratification for RF and its related mortality.
  • Loading...
    Thumbnail Image
    Item
    Risk Factors for Noninvasive Ventilation Failure in Children Post-Hematopoietic Cell Transplant
    (Frontiers Media, 2021-05-27) Rowan, Courtney M.; Fitzgerald, Julie C.; Agulnik, Asya; Zinter, Matt S.; Sharron, Matthew P.; Slaven, James E.; Kreml, Erin M.; Bajwa, Rajinder P.S.; Mahadeo, Kris M.; Moffet, Jerelyn; Tarquinio, Keiko M.; Steiner, Marie E.; Pediatrics, School of Medicine
    Rationale: Little is known on the use of noninvasive ventilation (NIPPV) in pediatric hematopoietic cell transplant (HCT) patients. Objective: We sought to describe the landscape of NIPPV use and to identify risk factors for failure to inform future investigation or quality improvement. Methods: This is a multicenter, retrospective observational cohort of 153 consecutive children post-HCT requiring NIPPV from 2010-2016. Results: 97 (63%) failed NIPPV. Factors associated with failure on univariate analysis included: longer oxygen use prior to NIPPV (p=0.04), vasoactive agent use (p<0.001), and higher respiratory rate at multiple hours of NIPPV use (1hr p=0.02, 2hr p=0.04, 4hr p=0.008, 8hr p=0.002). Using respiratory rate at 4 hours a multivariable model was constructed. This model demonstrated high ability to discriminate NIPPV failure (AUC=0.794) with the following results: respiratory rate >40 at 4 hours [aOR=6.3 9(95% CI: 2.4, 16.4), p<0.001] and vasoactive use [aOR=4.9 (95% CI: 1.9, 13.1), p=0.001]. Of note, 11 patients had a cardiac arrest during intubation (11%) and 3 others arrested prior to intubation. These 14 patients were closer to HCT [14 days (IQR:4, 73) vs 54 (IQR:21,117), p<0.01] and there was a trend toward beginning NIPPV outside of the PICU and arrest during/prior to intubation (p=0.056). Conclusions: In this cohort respiratory rate at 4 hours and vasoactive use are independent risk factors of NIPPV failure. An objective model to predict which children may benefit from a trial of NIPPV, may also inform the timing of both NIPPV initiation and uncomplicated intubation.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University