- Browse by Author
Browsing by Author "Sharma, Ashish"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item AI in Medical Imaging Informatics: Current Challenges and Future Directions(IEEE, 2020-07) Panayides, Andreas S.; Amini, Amir; Filipovic, Nenad D.; Sharma, Ashish; Tsaftaris, Sotirios A.; Young, Alistair; Foran, David; Do, Nhan; Golemati, Spyretta; Kurc, Tahsin; Huang, Kun; Nikita, Konstantina S.; Veasey, Ben P.; Zervakis, Michalis; Saltz, Joel H.; Pattichis, Constantinos S.; Biostatistics & Health Data Science, School of MedicineThis paper reviews state-of-the-art research solutions across the spectrum of medical imaging informatics, discusses clinical translation, and provides future directions for advancing clinical practice. More specifically, it summarizes advances in medical imaging acquisition technologies for different modalities, highlighting the necessity for efficient medical data management strategies in the context of AI in big healthcare data analytics. It then provides a synopsis of contemporary and emerging algorithmic methods for disease classification and organ/ tissue segmentation, focusing on AI and deep learning architectures that have already become the de facto approach. The clinical benefits of in-silico modelling advances linked with evolving 3D reconstruction and visualization applications are further documented. Concluding, integrative analytics approaches driven by associate research branches highlighted in this study promise to revolutionize imaging informatics as known today across the healthcare continuum for both radiology and digital pathology applications. The latter, is projected to enable informed, more accurate diagnosis, timely prognosis, and effective treatment planning, underpinning precision medicine.Item A DICOM Framework for Machine Learning and Processing Pipelines Against Real-time Radiology Images(SpringerLink, 2021-08-17) Kathiravelu, Pradeeban; Sharma, Puneet; Sharma, Ashish; Banerjee, Imon; Trivedi, Hari; Purkayastha, Saptarshi; Sinha, Priyanshu; Cadrin‑Chenevert, Alexandre; Safdar, Nabile; Wawira Gichoya, Judy; BioHealth Informatics, School of Informatics and ComputingReal-time execution of machine learning (ML) pipelines on radiology images is difficult due to limited computing resources in clinical environments, whereas running them in research clusters requires efficient data transfer capabilities. We developed Niffler, an open-source Digital Imaging and Communications in Medicine (DICOM) framework that enables ML and processing pipelines in research clusters by efficiently retrieving images from the hospitals’ PACS and extracting the metadata from the images. We deployed Niffler at our institution (Emory Healthcare, the largest healthcare network in the state of Georgia) and retrieved data from 715 scanners spanning 12 sites, up to 350 GB/day continuously in real-time as a DICOM data stream over the past 2 years. We also used Niffler to retrieve images bulk on-demand based on user-provided filters to facilitate several research projects. This paper presents the architecture and three such use cases of Niffler. First, we executed an IVC filter detection and segmentation pipeline on abdominal radiographs in real-time, which was able to classify 989 test images with an accuracy of 96.0%. Second, we applied the Niffler Metadata Extractor to understand the operational efficiency of individual MRI systems based on calculated metrics. We benchmarked the accuracy of the calculated exam time windows by comparing Niffler against the Clinical Data Warehouse (CDW). Niffler accurately identified the scanners’ examination timeframes and idling times, whereas CDW falsely depicted several exam overlaps due to human errors. Third, with metadata extracted from the images by Niffler, we identified scanners with misconfigured time and reconfigured five scanners. Our evaluations highlight how Niffler enables real-time ML and processing pipelines in a research cluster.Item Multi-Label Medical Image Retrieval Via Learning Multi-Class Similarity(SSRN, 2022) Guo, Xiaoyuan; Duan, Jiali; Gichoya, Judy Wawira; Trivedi, Hari; Purkayastha, Saptarshi; Sharma, Ashish; Banerjee, Imon; BioHealth Informatics, School of Informatics and ComputingIntroduction: Multi-label image retrieval is a challenging problem in the medical area. First, compared to natural images, labels in the medical domain exhibit higher class-imbalance and much nuanced variations. Second, pair-based sampling for positives and negatives during similarity optimization are ambiguous in the multi-label setting, as samples with the same set of labels are limited. Methods: To address the aforementioned challenges, we propose a proxy-based multi-class similarity (PMS) framework, which compares and contrasts samples by comparing their similarities with the discovered proxies. In this way, samples of different sets of label attributes can be utilized and compared indirectly, without the need for complicated sampling. PMS learns a class-wise feature decomposition and maintains a memory bank for positive features from each class. The memory bank keeps track of the latest features, used to compute the class proxies. We compare samples based on their similarity distributions against the proxies, which provide a more stable mean against noise. Results: We benchmark over 10 popular metric learning baselines on two public chest X-ray datasets and experiments show consistent stability of our approach under both exact and non-exact match settings. Conclusions: We proposed a methodology for multi-label medical image retrieval and design a proxy-based multi-class similarity metric, which compares and contrasts samples based on their similarity distributions with respect to the class proxies. With no perquisites, the metrics can be applied to various multi-label medical image applications. The implementation code repository will be publicly available after acceptance.Item Report on computational assessment of Tumor Infiltrating Lymphocytes from the International Immuno-Oncology Biomarker Working Group(Nature Research, 2020-05-12) Amgad, Mohamed; Stovgaard, Elisabeth Specht; Balslev, Eva; Thagaard, Jeppe; Chen, Weijie; Dudgeon, Sarah; Sharma, Ashish; Kerner, Jennifer K.; Denkert, Carsten; Yuan, Yinyin; AbdulJabbar, Khalid; Wienert, Stephan; Savas, Peter; Voorwerk, Leonie; Beck, Andrew H.; Madabhushi, Anant; Hartman, Johan; Sebastian, Manu M.; Horlings, Hugo M.; Hudeček, Jan; Ciompi, Francesco; Moore, David A.; Singh, Rajendra; Roblin, Elvire; Balancin, Marcelo Luiz; Mathieu, Marie-Christine; Lennerz, Jochen K.; Kirtani, Pawan; Chen, I-Chun; Braybrooke, Jeremy P.; Pruneri, Giancarlo; Demaria, Sandra; Adams, Sylvia; Schnitt, Stuart J.; Lakhani, Sunil R.; Rojo, Federico; Comerma, Laura; Badve, Sunil S.; Khojasteh, Mehrnoush; Symmans, W. Fraser; Sotiriou, Christos; Gonzalez-Ericsson, Paula; Pogue-Geile, Katherine L.; Kim, Rim S.; Rimm, David L.; Viale, Giuseppe; Hewitt, Stephen M.; Bartlett, John M. S.; Penault-Llorca, Frédérique; Goel, Shom; Lien, Huang-Chun; Loibl, Sibylle; Kos, Zuzana; Loi, Sherene; Hanna, Matthew G.; Michiels, Stefan; Kok, Marleen; Nielsen, Torsten O.; Lazar, Alexander J.; Bago-Horvath, Zsuzsanna; Kooreman, Loes F. S.; Van der Laak, Jeroen A.W. M.; Saltz, Joel; Gallas, Brandon D.; Kurkure, Uday; Barnes, Michael; Salgado, Roberto; Cooper, Lee A. D.; International Immuno-Oncology Biomarker Working Group; Pathology and Laboratory Medicine, School of MedicineAssessment of tumor-infiltrating lymphocytes (TILs) is increasingly recognized as an integral part of the prognostic workflow in triple-negative (TNBC) and HER2-positive breast cancer, as well as many other solid tumors. This recognition has come about thanks to standardized visual reporting guidelines, which helped to reduce inter-reader variability. Now, there are ripe opportunities to employ computational methods that extract spatio-morphologic predictive features, enabling computer-aided diagnostics. We detail the benefits of computational TILs assessment, the readiness of TILs scoring for computational assessment, and outline considerations for overcoming key barriers to clinical translation in this arena. Specifically, we discuss: 1. ensuring computational workflows closely capture visual guidelines and standards; 2. challenges and thoughts standards for assessment of algorithms including training, preanalytical, analytical, and clinical validation; 3. perspectives on how to realize the potential of machine learning models and to overcome the perceptual and practical limits of visual scoring.