- Browse by Author
Browsing by Author "Shao, Yu"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Genome-Wide Mapping and Interrogation of the Nmp4 Antianabolic Bone Axis(Oxford University Press, 2015-09) Childress, Paul; Stayrook, Keith R.; Alvarez, Marta B.; Wang, Zhiping; Shao, Yu; Hernandez-Buquer, Selene; Mack, Justin K.; Grese, Zachary R.; He, Yongzheng; Horan, Daniel; Pavalko, Fredrick M.; Warden, Stuart J.; Robling, Alexander G.; Yang, Feng-Chun; Allen, Matthew R.; Krishnan, Venkatesh; Liu, Yunlong; Bidwell, Joseph P.; Department of Anatomy & Cell Biology, IU School of MedicinePTH is an osteoanabolic for treating osteoporosis but its potency wanes. Disabling the transcription factor nuclear matrix protein 4 (Nmp4) in healthy, ovary-intact mice enhances bone response to PTH and bone morphogenetic protein 2 and protects from unloading-induced osteopenia. These Nmp4(-/-) mice exhibit expanded bone marrow populations of osteoprogenitors and supporting CD8(+) T cells. To determine whether the Nmp4(-/-) phenotype persists in an osteoporosis model we compared PTH response in ovariectomized (ovx) wild-type (WT) and Nmp4(-/-) mice. To identify potential Nmp4 target genes, we performed bioinformatic/pathway profiling on Nmp4 chromatin immunoprecipitation sequencing (ChIP-seq) data. Mice (12 w) were ovx or sham operated 4 weeks before the initiation of PTH therapy. Skeletal phenotype analysis included microcomputed tomography, histomorphometry, serum profiles, fluorescence-activated cell sorting and the growth/mineralization of cultured WT and Nmp4(-/-) bone marrow mesenchymal stem progenitor cells (MSPCs). ChIP-seq data were derived using MC3T3-E1 preosteoblasts, murine embryonic stem cells, and 2 blood cell lines. Ovx Nmp4(-/-) mice exhibited an improved response to PTH coupled with elevated numbers of osteoprogenitors and CD8(+) T cells, but were not protected from ovx-induced bone loss. Cultured Nmp4(-/-) MSPCs displayed enhanced proliferation and accelerated mineralization. ChIP-seq/gene ontology analyses identified target genes likely under Nmp4 control as enriched for negative regulators of biosynthetic processes. Interrogation of mRNA transcripts in nondifferentiating and osteogenic differentiating WT and Nmp4(-/-) MSPCs was performed on 90 Nmp4 target genes and differentiation markers. These data suggest that Nmp4 suppresses bone anabolism, in part, by regulating IGF-binding protein expression. Changes in Nmp4 status may lead to improvements in osteoprogenitor response to therapeutic cues.Item Improving Combination Osteoporosis Therapy in a Preclinical Model of Heightened Osteoanabolism(Oxford University Press, 2017-09-01) Shao, Yu; Hernandez-Buquer, Selene; Childress, Paul; Stayrook, Keith R.; Alvarez, Marta B.; Davis, Hannah; Plotkin, Lilian I.; He, Yongzheng; Condon, Keith W.; Burr, David B.; Warden, Stuart J.; Robling, Alexander G.; Yang, Feng-Chun; Wek, Ronald C.; Allen, Matthew R.; Bidwell, Joseph P.; Medical and Molecular Genetics, School of MedicineCombining anticatabolic agents with parathyroid hormone (PTH) to enhance bone mass has yielded mixed results in osteoporosis patients. Toward the goal of enhancing the efficacy of these regimens, we tested their utility in combination with loss of the transcription factor Nmp4 because disabling this gene amplifies PTH-induced increases in trabecular bone in mice by boosting osteoblast secretory activity. We addressed whether combining a sustained anabolic response with an anticatabolic results in superior bone acquisition compared with PTH monotherapy. Additionally, we inquired whether Nmp4 interferes with anticatabolic efficacy. Wild-type and Nmp4-/- mice were ovariectomized at 12 weeks of age, followed by therapy regimens, administered from 16 to 24 weeks, and included individually or combined PTH, alendronate (ALN), zoledronate (ZOL), and raloxifene (RAL). Anabolic therapeutic efficacy generally corresponded with PTH + RAL = PTH + ZOL > PTH + ALN = PTH > vehicle control. Loss of Nmp4 enhanced femoral trabecular bone increases under PTH + RAL and PTH + ZOL. RAL and ZOL promoted bone restoration, but unexpectedly, loss of Nmp4 boosted RAL-induced increases in femoral trabecular bone. The combination of PTH, RAL, and loss of Nmp4 significantly increased bone marrow osteoprogenitor number, but did not affect adipogenesis or osteoclastogenesis. RAL, but not ZOL, increased osteoprogenitors in both genotypes. Nmp4 status did not influence bone serum marker responses to treatments, but Nmp4-/- mice as a group showed elevated levels of the bone formation marker osteocalcin. We conclude that the heightened osteoanabolism of the Nmp4-/- skeleton enhances the effectiveness of diverse osteoporosis treatments, in part by increasing hyperanabolic osteoprogenitors. Nmp4 provides a promising target pathway for identifying barriers to pharmacologically induced bone formation.Item Loss of NMP4 improves diverse osteoporosis therapies in a pre-clinical model : skeletal, cellular, genomic and transcriptomic approaches(2017-06-22) Shao, Yu; Bidwell, Joseph P.; Wek, Ronald C.; Mosley, Amber L.; Liu, Yunlong; White, Kenneth E.We have previously demonstrated that disabling the transcription factor Nuclear Matrix Protein 4 (NMP4) improved parathyroid hormone (PTH)-induced trabecular bone gain in ovariectomized (OVX) and healthy mice. Here we evaluated whether loss of Nmp4 enhanced bone restoration in OVX mice under concurrent PTH combination therapies and anti-catabolic mono-therapies. Wild type (WT) and Nmp4-/- mice were OVX at 12wks of age followed by therapy regimens, administered from 16wks-24wks, and included individually or combined PTH, alendronate (ALN), zoledronate (ZOL), and raloxifene (RAL). Generally the PTH+RAL and PTH+ZOL therapies were more effective in restoring bone than the PTH mono-therapy. Loss of Nmp4 further improved the restoration of femoral trabecular bone under these treatments. RAL and ZOL mono-therapies moderately increased bone volume but unexpectedly the Nmp4-/- mice showed an enhanced RAL-induced increase in femoral trabecular bone. Immunohistochemical and flow cytometry analyses of the bone marrow and serum profiling for markers of bone formation and resorption indicated that the heightened osteoanabolism of the Nmp4-/- mice under these diverse osteoporosis treatments was partially attributed to an expansion of the osteoprogenitor pool. To address whether the enhanced bone formation observed in Nmp4-/- mice produced structurally sound tissue, mechanical testing was conducted on the femurs of healthy mice treated with intermittent PTH, RAL mono-therapy, or PTH+RAL. Nmp4-/- femurs showed modestly improved mechanical and material properties. At the cellular level, loss of Nmp4 accelerated mineralization in differentiating mesenchymal stem/progenitor cells (MSPCs). Transcriptomic and biochemical analyses indicated that loss of Nmp4 elevated ribosome biogenesis and expanded the capacity of the endoplasmic reticulum for processing protein. Preliminary data showed that disabling Nmp4 increased both aerobic glycolysis and oxidative phosphorylation in osteoprogenitors, which is an emerging hallmark of anabolic osteogenic cells. Transcriptomic analysis also suggested NMP4 targeted pathways driving bone formation. These included but not limited to BMP, IGF1, TGFβ and Wnt signaling pathways. Finally, transcriptomic profiling revealed that Nmp4-/- MSPCs showed a significant perturbation in numerous immunomodulatory pathways, particularly in the interleukin system. The heightened osteoanabolism of the Nmp4-/- skeleton enhances the effectiveness of diverse osteoporosis treatments, providing a promising target pathway for identifying barriers to pharmacologically-induced bone formation.Item Loss of Nmp4 optimizes osteogenic metabolism and secretion to enhance bone quality(APS, 2019) Shao, Yu; Wichern, Emily; Childress, Paul J.; Adaway, Michele; Misra, Jagannath; Klunk, Angela; Burr, David B.; Wek, Ronald C.; Mosley, Amber L.; Liu, Yunlong; Robling, Alexander G.; Brustovetsky, Nickolay; Hamilton, James; Jacobs, Kylie; Vashishth, Deepak; Stayrook, Keith R.; Allen, Matthew R.; Wallace, Joseph M.; Bidwell, Joseph P.; Anatomy and Cell Biology, IU School of MedicineA goal of osteoporosis therapy is to restore lost bone with structurally sound tissue. Mice lacking the transcription factor Nuclear Matrix Protein 4 (Nmp4, Zfp384, Ciz, ZNF384) respond to several classes of osteoporosis drugs with enhanced bone formation compared to wild type (WT) animals. Nmp4-/- mesenchymal stem/progenitor cells (MSPCs) exhibit an accelerated and enhanced mineralization during osteoblast differentiation. To address the mechanisms underlying this hyper-anabolic phenotype, we carried out RNA-sequencing and molecular and cellular analyses of WT and Nmp4-/- MSPCs during osteogenesis to define pathways and mechanisms associated with elevated matrix production. We determined that Nmp4 has a broad impact on the transcriptome during osteogenic differentiation, contributing to the expression of over 5,000 genes. Phenotypic anchoring of transcriptional data was performed for the hypothesis-testing arm through analysis of cell metabolism, protein synthesis and secretion, and bone material properties. Mechanistic studies confirmed that Nmp4-/- MSPCs exhibited an enhanced capacity for glycolytic conversion- a key step in bone anabolism. Nmp4-/- cells showed elevated collagen translation and secretion. Expression of matrix genes that contribute to bone material-level mechanical properties were elevated in Nmp4-/- cells, an observation that was supported by biomechanical testing of bone samples from Nmp4-/- and WT mice. We conclude that loss of Nmp4 increases the magnitude of glycolysis upon the metabolic switch, which fuels the conversion of the osteoblast into a super-secretor of matrix resulting in more bone with improvements in intrinsic quality.Item Nuclear Matrix Protein 4 Is a Novel Regulator of Ribosome Biogenesis and Controls the Unfolded Protein Response via Repression of Gadd34 Expression(American Society for Biochemistry and Molecular Biology, 2016-06-24) Young, Sara K.; Shao, Yu; Bidwell, Joseph P.; Wek, Ronald C.; Biochemistry and Molecular Biology, School of MedicineThe unfolded protein response (UPR) maintains protein homeostasis by governing the processing capacity of the endoplasmic reticulum (ER) to manage ER client loads; however, key regulators within the UPR remain to be identified. Activation of the UPR sensor PERK (EIFAK3/PEK) results in the phosphorylation of the α subunit of eIF2 (eIF2α-P), which represses translation initiation and reduces influx of newly synthesized proteins into the overloaded ER. As part of this adaptive response, eIF2α-P also induces a feedback mechanism through enhanced transcriptional and translational expression of Gadd34 (Ppp1r15A),which targets type 1 protein phosphatase for dephosphorylation of eIF2α-P to restore protein synthesis. Here we describe a novel mechanism by which Gadd34 expression is regulated through the activity of the zinc finger transcription factor NMP4 (ZNF384, CIZ). NMP4 functions to suppress bone anabolism, and we suggest that this occurs due to decreased protein synthesis of factors involved in bone formation through NMP4-mediated dampening of Gadd34 and c-Myc expression. Loss of Nmp4 resulted in an increase in c-Myc and Gadd34 expression that facilitated enhanced ribosome biogenesis and global protein synthesis. Importantly, protein synthesis was sustained during pharmacological induction of the UPR through a mechanism suggested to involve GADD34-mediated dephosphorylation of eIF2α-P. Sustained protein synthesis sensitized cells to pharmacological induction of the UPR, and the observed decrease in cell viability was restored upon inhibition of GADD34 activity. We conclude that NMP4 is a key regulator of ribosome biogenesis and the UPR, which together play a central role in determining cell viability during endoplasmic reticulum stress.