- Browse by Author
Browsing by Author "Shane, Michael Anne"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Hormonal regulation of the epithelial Na+ channel: From amphibians to mammals(2006-05) Shane, Michael Anne; Nofziger, Charity; Blazer-Yost, BonnieHigh-resistance epithelia derived from amphibian sources such as frog skin, toad urinary bladder, and the A6 Xenopus laevis kidney cell line have been widely used to elucidate the underlying mechanisms involved in the regulation of vectorial ion transport. More recently, the isolation of high-resistance mammalian cell lines has provided model systems in which to study differences and similarities between the regulation of ion transporter function in amphibian and mammalian renal epithelia. In the present study, we have compared the natriferic (Na+ retaining) responses to aldosterone, insulin, and vasotocin/vasopressin in the A6 and mpkCCDcl4 (mouse principal cells of the kidney cortical collecting duct) cell lines. The functional responses of the epithelial Na+ channel (ENaC) to hormonal stimulation were remarkably similar in both the amphibian and mammalian lines. In addition, insulin- and aldosterone-stimulated, reabsorptive Na+ transport in both cell lines requires the presence of functional PI3-kinase.Item PPARγ agonists do not directly enhance basal or insulin-stimulated Na+ transport via the epithelial Na+ channel(2005-12) Nofziger, Charity; Chen, Lihong; Shane, Michael Anne; Smith, Chari D.; Brown, Kathleen K.; Blazer-Yost, BonnieSelective agonists of peroxisome proliferator-activated receptor gamma (PPARgamma) are anti-diabetic drugs that enhance cellular responsiveness to insulin. However, in some patients, fluid retention, plasma volume expansion, and edema have been observed. It is well established that insulin regulates Na(+) reabsorption via the epithelial sodium channel (ENaC) located in the distal tubule. Therefore, we hypothesized that these agonists may positively modulate insulin-stimulated ENaC activity leading to increased Na(+) reabsorption and fluid retention. Using electrophysiological techniques, dose-response curves for insulin-mediated Na(+) transport in the A6, M-1, and mpkCCD(cl4) cell lines were performed. Each line demonstrated hormone efficacy within physiological concentration ranges and, therefore, can be used to monitor clinically relevant effects of pharmacological agents which may affect electrolyte transport. Immunodetection and quantitative PCR analyses showed that each cell line expresses viable and functional PPARgamma receptors. Despite this finding, two PPARgamma agonists, pioglitazone and GW7845 did not directly enhance basal or insulin-stimulated Na(+) flux via ENaC, as shown by electrophysiological methodologies. These studies provide important results, which eliminate insulin-mediated ENaC activation as a candidate mechanism underlying the fluid retention observed with PPARgamma agonist use.