- Browse by Author
Browsing by Author "Shakouri, Ali"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Anomaly Detection and Inter-Sensor Transfer Learning on Smart Manufacturing Datasets(MDPI, 2023-01-02) Abdallah, Mustafa; Joung, Byung-Gun; Lee, Wo Jae; Mousoulis, Charilaos; Raghunathan, Nithin; Shakouri, Ali; Sutherland, John W.; Bagchi, Saurabh; Computer and Information Science, School of ScienceSmart manufacturing systems are considered the next generation of manufacturing applications. One important goal of the smart manufacturing system is to rapidly detect and anticipate failures to reduce maintenance cost and minimize machine downtime. This often boils down to detecting anomalies within the sensor data acquired from the system which has different characteristics with respect to the operating point of the environment or machines, such as, the RPM of the motor. In this paper, we analyze four datasets from sensors deployed in manufacturing testbeds. We detect the level of defect for each sensor data leveraging deep learning techniques. We also evaluate the performance of several traditional and ML-based forecasting models for predicting the time series of sensor data. We show that careful selection of training data by aggregating multiple predictive RPM values is beneficial. Then, considering the sparse data from one kind of sensor, we perform transfer learning from a high data rate sensor to perform defect type classification. We release our manufacturing database corpus (4 datasets) and codes for anomaly detection and defect type classification for the community to build on it. Taken together, we show that predictive failure classification can be achieved, paving the way for predictive maintenance.Item Context-Aware Collaborative Intelligence With Spatio-Temporal In-Sensor-Analytics for Efficient Communication in a Large-Area IoT Testbed(IEEE, 2021) Chatterjee, Baibhab; Seo, Dong-Hyun; Chakraborty, Shramana; Avlani, Shitij; Jiang, Xiaofan; Zhang, Heng; Abdallah, Mustafa; Raghunathan, Nithin; Mousoulis, Charilaos; Shakouri, Ali; Bagchi, Saurabh; Peroulis, Dimitrios; Sen, Shreyas; Electrical and Computer Engineering, Purdue School of Engineering and TechnologyDecades of continuous scaling has reduced the energy of unit computing to virtually zero, while energy-efficient communication has remained the primary bottleneck in achieving fully energy-autonomous Internet-of-Things (IoT) nodes. This article presents and analyzes the tradeoffs between the energies required for communication and computation in a wireless sensor network, deployed in a mesh architecture over a 2400-acre university campus, and is targeted toward multisensor measurement of temperature, humidity and water nitrate concentration for smart agriculture. Several scenarios involving in-sensor analytics (ISA), collaborative intelligence (CI), and context-aware switching (CAS) of the cluster head during CI has been considered. A real-time co-optimization algorithm has been developed for minimizing the energy consumption in the network, hence maximizing the overall battery lifetime. Measurement results show that the proposed ISA consumes ≈ 467× lower energy as compared to traditional Bluetooth low energy (BLE) communication, and ≈ 69500× lower energy as compared with long-range (LoRa) communication. When the ISA is implemented in conjunction with LoRa, the lifetime of the node increases from a mere 4.3 h to 66.6 days with a 230-mAh coin cell battery, while preserving >99% of the total information. The CI and CAS algorithms help in extending the worst case node lifetime by an additional 50%, thereby exhibiting an overall network lifetime of ≈ 104 days, which is >90% of the theoretical limits as posed by the leakage current present in the system, while effectively transferring information sampled every second. A Web-based monitoring system was developed to continuously archive the measured data, and for reporting real-time anomalies.