- Browse by Author
Browsing by Author "Shah-Williams, Ebony"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Enrollment of Diverse Populations in the INGENIOUS Pharmacogenetics Clinical Trial(Frontiers, 2020-06) Shah-Williams, Ebony; Levy, Kenneth D.; Zang, Yong; Holmes, Ann M.; Stoughton, Christa; Dexter, Paul; Skaar, Todd C.; Medicine, School of MedicineRecruitment of diverse populations and subjects living in Medically Underserved Areas and Populations (MUA/P’s) into clinical trials is a considerable challenge. Likewise, representation of African-Americans in pharmacogenetic trials is often inadequate, but critical for identifying genetic variation within and between populations. To identify enrollment patterns and variables that predict enrollment in a diverse underserved population, we analyzed data from the INGENIOUS (Indiana GENomics Implementation and Opportunity for the UnderServed), pharmacogenomics implementation clinical trial conducted at a community hospital for underserved subjects (Safety net hospital), and a statewide healthcare system (Academic hospital). We used a logistic regression model to identify patient variables that predicted successful enrollment after subjects were contacted and evaluated the reasons that clinical trial eligible subjects refused enrollment. In both healthcare systems, African-Americans were less likely to refuse the study than non-Hispanic Whites (Safety net, OR = 0.68, and p < 0.002; Academic hospital, OR = 0.64, and p < 0.001). At the Safety net hospital, other minorities were more likely to refuse the study than non-Hispanic Whites (OR = 1.58, p < 0.04). The odds of refusing the study once contacted increased with patient age (Safety net hospital, OR = 1.02, p < 0.001, Academic hospital, OR = 1.02, and p < 0.001). At the Academic hospital, females were less likely to refuse the study than males (OR = 0.81, p = 0.01) and those not living in MUA/P’s were less likely to refuse the study than those living in MUA/P’s (OR = 0.81, p = 0.007). The most frequent barriers to enrollment included not being interested, being too busy, transportation, and illness. A lack of trust was reported less frequently. In conclusion, African-Americans can be readily recruited to pharmacogenetic clinical trials once contact has been successfully initiated. However, health care initiatives and increased recruitment efforts of subjects living in MUA/Ps are needed. Enrollment could be further enhanced by improving research awareness and knowledge of clinical trials, reducing time needed for participation, and compensating for travel.Item Genetic loci associated with skin pigmentation in African Americans and their effects on vitamin D deficiency(Public Library of Science, 2021-02-18) Batai, Ken; Cui, Zuxi; Arora, Amit; Shah-Williams, Ebony; Hernandez, Wenndy; Ruden, Maria; Hollowell, Courtney M. P.; Hooker, Stanley E.; Bathina, Madhavi; Murphy, Adam B.; Bonilla, Carolina; Kittles, Rick A.; Medical and Molecular Genetics, School of MedicineA recent genome-wide association study (GWAS) in African descent populations identified novel loci associated with skin pigmentation. However, how genomic variations affect skin pigmentation and how these skin pigmentation gene variants affect serum 25(OH) vitamin D variation has not been explored in African Americans (AAs). In order to further understand genetic factors that affect human skin pigmentation and serum 25(OH)D variation, we performed a GWAS for skin pigmentation with 395 AAs and a replication study with 681 AAs. Then, we tested if the identified variants are associated with serum 25(OH) D concentrations in a subset of AAs (n = 591). Skin pigmentation, Melanin Index (M-Index), was measured using a narrow-band reflectometer. Multiple regression analysis was performed to identify variants associated with M-Index and to assess their role in serum 25(OH)D variation adjusting for population stratification and relevant confounding variables. A variant near the SLC24A5 gene (rs2675345) showed the strongest signal of association with M-Index (P = 4.0 x 10-30 in the pooled dataset). Variants in SLC24A5, SLC45A2 and OCA2 together account for a large proportion of skin pigmentation variance (11%). The effects of these variants on M-Index was modified by sex (P for interaction = 0.009). However, West African Ancestry (WAA) also accounts for a large proportion of M-Index variance (23%). M-Index also varies among AAs with high WAA and high Genetic Score calculated from top variants associated with M-Index, suggesting that other unknown genomic factors related to WAA are likely contributing to skin pigmentation variation. M-Index was not associated with serum 25(OH)D concentrations, but the Genetic Score was significantly associated with vitamin D deficiency (serum 25(OH)D levels less than 12 ng/mL) (OR, 1.30; 95% CI, 1.04-1.64). The findings support the hypothesis suggesting that skin pigmentation evolved responding to increased demand for subcutaneous vitamin D synthesis in high latitude environments.Item Genetic Variation and Immunohistochemical Localization of the Glucocorticoid Receptor in Breast Cancer Cases from the Breast Cancer Care in Chicago Cohort(MDPI, 2021-05) Al-Alem, Umaima; Mahmoud, Abeer M.; Batai, Ken; Shah-Williams, Ebony; Gann, Peter H.; Kittles, Rick; Rauscher, Garth H.; Medical and Molecular Genetics, School of MedicineBackground: Glucocorticoid, one of the primary mediators of stress, acts via its receptor, the glucocorticoid receptor (GCR/NR3C1), to regulate a myriad of physiological processes. We measured the genetic variation and protein expression of GCR, and the genes that regulate GCR function or response and examined whether these alterations were associated with breast cancer clinicopathological characteristics. Method: We used samples from a multiracial cohort of breast cancer patients to assess the association between breast cancer characteristics and the genetic variants of single nucleotide polymorphisms (SNPs) in GCR/NR3C1, FKBP5, Sgk1, IL-6, ADIPOQ, LEPR, SOD2, CAT, and BCL2. Results: Several SNPs were associated with breast cancer characteristics, but statistical significance was lost after adjustment for multiple comparisons. GCR was detected in all normal breast tissues and was predominantly located in the nuclei of the myoepithelial cell layer, whereas the luminal layer was negative for GCR. GCR expression was significantly decreased in all breast cancer tissue types, compared to nontumor tissue, but was not associated with breast cancer characteristics. We found that high nuclear GCR expression was associated with basal cell marker cytokeratin 5/6 positivity. Conclusion: GCR expression is reduced in breast cancer tissue and correlates with the basal cell marker CK5/6.