- Browse by Author
Browsing by Author "Shah, Kushal J."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item External cortical landmarks for localization of the hippocampus: Application for temporal lobectomy and amygdalohippocampectomy(Scientific Scholar, 2018-08-22) Tubbs, R. Shane; Loukas, Marios; Barbaro, Nicholas M.; Shah, Kushal J.; Cohen-Gadol, Aaron A.; Neurological Surgery, School of MedicineBackground: Accessing the hippocampus for amygdalohippocampectomy and minimally invasive procedures, such as depth electrode placement, require an accurate knowledge regarding the location of the hippocampus. Methods: The authors removed 10 human cadaveric brains from the cranium and observed the relationships between the lateral temporal neocortex and the underlying hippocampus. They then measured the distance between the hippocampus and superficial landmarks. The authors also validated their study using magnetic resonance imaging (MRI) scans of 10 patients suffering from medial temporal lobe sclerosis where the distance from the hippocampal head to the anterior temporal tip was measured. Results: In general, the length of the hippocampus was along the inferior temporal sulcus and inferior aspect of the middle temporal gyrus. Although the hippocampus tended to be more superiorly located in female specimens and on the left side, this did not reach statistical significance. The length of the hippocampus tended to be shorter in females, but this too failed to reach statistical significance. The mean distance from the anterior temporal tip to the hippocampal head was identical in the cadavers and MRIs of patients with medial temporal lobe sclerosis. Conclusions: Additional landmarks for localizing the underlying hippocampus may be helpful in temporal lobe surgery. Based on this study, there are relatively constant anatomical landmarks between the hippocampus and overlying temporal cortex. Such landmarks may be used in localizing the hippocampus during amygdalohippocampectomy and depth electrode implantation in verifying the accuracy of image-guided methods and as adjuvant methodologies when these latter technologies are not used or are unavailable.Item Virtual, 3-Dimensional Temporal Bone Model and Its Educational Value for Neurosurgical Trainees(Elsevier, 2018) Morone, Peter J.; Shah, Kushal J.; Hendricks, Benjamin K.; Cohen-Gadol, Aaron A.; Neurological Surgery, School of MedicineObjective Learning complex neuroanatomy is an arduous yet important task for every neurosurgical trainee. As technology has advanced, various modalities have been created to aid our understanding of anatomy. This study sought to assess the educational value of a virtual, 3-dimensional (3D) temporal bone model. Methods The 3D temporal bone model was created with assistance of computer graphic designers and published online. Its educational value as a teaching was tool was assessed by querying 73 neurosurgery residents at 4 institutions and was compared with that of a standard, 2-dimensional (2D) temporal bone resource. Data were collected via a survey, and significance among responses was analyzed via a univariate chi-square test. Results The survey response rate was 37%. Greater than 90% of residents preferred to study with the 3D model compared with the 2D resource and felt that the 3D model allowed them understand the anatomy more realistically (P = 0.001). Moreover, >90% of residents believed that reviewing the 3D model before an actual surgery could lead to improved operative efficiency and safety (P = 0.001). Conclusions This study demonstrates the utility of a novel, 3D temporal bone model as a teaching tool for neurosurgery residents. The model contains accurate anatomic structures and allows user interaction via a virtual, immersive environment.