- Browse by Author
Browsing by Author "Shah, Kavita"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Cdk5 activity in the brain - multiple paths of regulation(The Company of Biologists, 2014-06-01) Shah, Kavita; Lahiri, Debomoy; Department of Medical and Molecular Genetics, IU School of MedicineCyclin dependent kinase-5 (Cdk5), a family member of the cyclin-dependent kinases, plays a pivotal role in the central nervous system. During embryogenesis, Cdk5 is indispensable for brain development and, in the adult brain, it is essential for numerous neuronal processes, including higher cognitive functions such as learning and memory formation. However, Cdk5 activity becomes deregulated in several neurological disorders, such as Alzheimer's disease, Parkinson's disease and Huntington's disease, which leads to neurotoxicity. Therefore, precise control over Cdk5 activity is essential for its physiological functions. This Commentary covers the various mechanisms of Cdk5 regulation, including several recently identified protein activators and inhibitors of Cdk5 that control its activity in normal and diseased brains. We also discuss the autoregulatory activity of Cdk5 and its regulation at the transcriptional, post-transcriptional and post-translational levels. We finally highlight physiological and pathological roles of Cdk5 in the brain. Specific modulation of these protein regulators is expected to provide alternative strategies for the development of effective therapeutic interventions that are triggered by deregulation of Cdk5. © 2014. Published by The Company of Biologists Ltd.Item Design of Biomembrane-Mimicking Substrates of Tunable Viscosity to Regulate Cellular Mechanoresponse(2012-03-20) Minner, Daniel Eugene; Naumann, Christoph A.; Long, Eric C. (Eric Charles); Suter, Daniel; Shah, KavitaTissue cells display mechanosensitivity in their ability to discern and respond to changes in the viscoelastic properties of their surroundings. By anchoring and pulling, cells are capable of translating mechanical stimuli into a biological response through a process known as mechanotransduction, a pathway believed to critically impact cell adhesion, morphology and multiple cellular processes from migration to differentiation. While previous studies on polymeric gels have revealed the influence of substrate elasticity on cellular shape and function, a lack of suitable substrates (i.e. with mobile cell-substrate linkers) has hindered research on the role of substrate viscosity. This work presents the successful design and characterization of lipid-bilayer based cell substrates of tunable viscosity affecting cell-substrate linker mobility through changes in viscous drag. Here, two complementary membrane systems were employed to span a wide range of viscosity. Single polymer-tethered lipid bilayers were used to generate subtle changes in substrate viscosity while multiple, polymer-interconnected lipid bilayer stacks were capable of producing dramatic changes in substrate viscosity. The homogeneity and integrity of these novel multibilayer systems in the presence of adherent cells was confirmed using optical microscopy techniques. Profound changes in cellular growth, phenotype and cytoskeletal organization confirm the ability of cells to sense changes in viscosity. Moreover, increased migration speeds coupled with rapid area fluctuations suggest a transition to a different migration mode in response to the dramatic changes in substrate viscosity.Item Identification of LIMK2 as a therapeutic target in castration resistant prostate cancer(Elsevier, 2019-04) Nikhil, Kumar; Chang, Lei; Viccaro, Keith; Jacobsen, Max; McGuire, Callista; Satapathy, Shakti R.; Tandiary, Michael; Broman, Meaghan M.; Cresswell, Gregory; He, Yizhou J.; Sandusky, George E.; Ratliff, Timothy L.; Chowdhury, Dipanjan; Shah, Kavita; Pathology and Laboratory Medicine, School of MedicineThis study identified LIMK2 kinase as a disease-specific target in castration resistant prostate cancer (CRPC) pathogenesis, which is upregulated in response to androgen deprivation therapy, the current standard of treatment for prostate cancer. Surgical castration increases LIMK2 expression in mouse prostates due to increased hypoxia. Similarly, human clinical specimens showed highest LIMK2 levels in CRPC tissues compared to other stages, while minimal LIMK2 was observed in normal prostates. Most notably, inducible knockdown of LIMK2 fully reverses CRPC tumorigenesis in castrated mice, underscoring its potential as a clinical target for CRPC. We also identified TWIST1 as a direct substrate of LIMK2, which uncovered the molecular mechanism of LIMK2-induced malignancy. TWIST1 is strongly associated with CRPC initiation, progression and poor prognosis. LIMK2 increases TWIST1 mRNA levels upon hypoxia; and stabilizes TWIST1 by direct phosphorylation. TWIST1 also stabilizes LIMK2 by inhibiting its ubiquitylation. Phosphorylation-dead TWIST1 acts as dominant negative and fully prevents EMT and tumor formation in vivo, thereby highlighting the significance of LIMK2-TWIST1 signaling axis in CRPC. As LIMK2 null mice are viable, targeting LIMK2 should have minimal collateral toxicity, thereby improving the overall survival of CRPC patients.Item Probing the mechanism of Bacillus subtilis oxalate decarboxylase(2015-12-01) Zhu, Wen; Richards, Nigel G.; Li, Lei; Shah, Kavita; Mesecar, Andrew; Long, Eric C.Oxalate decarboxylase (EC 4. 1. 1. 2 OxDC) from Bacillus subtilis is a manganese-dependent enzyme that catalyzes the cleavage of the chemically inactive C-C bond in oxalate to yield formate and carbon dioxide. A mechanism involving Mn(III) has been proposed for OxDC, however no clear spectroscopic evidence to support this mechanism has yet been obtained. In addition, a recent study has shown that N-terminal metal binding site loop variants of OxDC were able to catalyze the oxidation of oxalate to yield hydrogen peroxide and carbon dioxide, which makes OxDc function as another oxalate degradation protein in the cupin superfamily, oxalate oxidase (EC 1.2.3.4 OxOx). In this work, wild-type (WT) Bacillus subtilis OxDC and a series of variants with mutations on conserved residues were characterized to investigate the catalytic mechanism of OxDC. The application of membrane inlet mass spectrometry (MIMS), electronic paramagnetic resonance (EPR) spectroscopy and kinetic isotope effects (KIEs) provided information about the mechanism. The Mn(III) was identified and characterized under acidic conditions in the presence of dioxygen and oxalate. Mutations on the second shell residues in the N-terminal metal binding site affected the enzyme activity properties of the metal. In the N-terminal domain, the functional importance of the residues in the active site loop region, especially Glu162, was confirmed, and evidence for the previously proposed mechanism in which OxDC and the OxDC/OxOx chimeric variant share the initial steps has been found. In addition, the mono-dentate coordination of oxalate in the N-terminal metal binding site was confirmed by X-ray crystallography. A proteinase cleavable OxDC was constructed and characterized, revealing the interaction between the N-terminal and C-terminal domains.Item A Tale of the Good and Bad: Remodeling of the Microtubule Network in the Brain by Cdk5(Springer, 2017-04) Shah, Kavita; Lahiri, Debomoy K.; Psychiatry, School of MedicineCdk5, a cyclin-dependent kinase family member, is a global orchestrator of neuronal cytoskeletal dynamics. During embryogenesis, Cdk5 is indispensable for brain development. In adults, it is essential for numerous neuronal processes, including higher cognitive functions such as learning and memory formation, drug addiction, pain signaling, and long-term behavior changes through long-term potentiation and long-term depression, all of which rely on rapid alterations in the cytoskeleton. Cdk5 activity becomes deregulated in various brain disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease, attention-deficit hyperactivity disorder, epilepsy, schizophrenia, and ischemic stroke; these all result in profound remodeling of the neuronal cytoskeleton. This Commentary specifically focuses on the pleiotropic contribution of Cdk5 in regulating neuronal microtubule remodeling. Because the vast majority of the physiological substrates of Cdk5 are associated with the neuronal cytoskeleton, our emphasis is on the Cdk5 substrates, such as CRMP2, stathmin, drebrin, dixdc1, axin, MAP2, MAP1B, doublecortin, kinesin-5, and tau, that have allowed to unravel the molecular mechanisms through which Cdk5 exerts its divergent roles in regulating neuronal microtubule dynamics, both in healthy and disease states.